Previous Page 4

Displaying 61 – 67 of 67

Showing per page

Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI

Gaël Cousin (2014)

Annales de l’institut Fourier

On peut construire facilement des exemples de connexions plates de rang 2 sur 2 comme tirés en arrière de connexions sur 1 . On donne un exemple de connexion qui ne peut être obtenue de cette manière. Cet exemple est construit à partir d’une solution algébrique de l’équation de Painlevé VI. On en déduit un feuilletage modulaire. La preuve de ce fait repose sur la classification des feuilletages sur les surfaces projectives par leurs dimensions de Kodaira, fruit du travail de Brunella, McQuillan et...

Une caractérisation des surfaces d'Inoue-Hirzebruch

Karl Oeljeklaus, Matei Toma, Dan Zaffran (2001)

Annales de l’institut Fourier

On montre que parmi les surfaces compactes complexes de classe V I I 0 avec b 2 > 0 , les surfaces d’Inoue-Hirzebruch sont caractérisées par le fait qu’elles possèdent deux champs de vecteurs tordus. Ce résultat est un pas vers la compréhension des feuilletages sur les surfaces V I I 0 .

[unknown]

Sébastien Alvarez, Nicolas Hussenot (0)

Annales de l’institut Fourier

[unknown]

Matthias Leuenberger (0)

Annales de l’institut Fourier

Vector fields from locally invertible polynomial maps in ℂⁿ

Alvaro Bustinduy, Luis Giraldo, Jesús Muciño-Raymundo (2015)

Colloquium Mathematicae

Let (F₁,..., Fₙ): ℂⁿ → ℂⁿ be a locally invertible polynomial map. We consider the canonical pull-back vector fields under this map, denoted by ∂/∂F₁,...,∂/∂Fₙ. Our main result is the following: if n-1 of the vector fields / F j have complete holomorphic flows along the typical fibers of the submersion ( F , . . . , F j - 1 , F j + 1 , . . . , F ) , then the inverse map exists. Several equivalent versions of this main hypothesis are given.

Vector fields, invariant varieties and linear systems

Jorge Vitório Pereira (2001)

Annales de l’institut Fourier

We investigate the interplay between invariant varieties of vector fields and the inflection locus of linear systems with respect to the vector field. Among the consequences of such investigation we obtain a computational criterion for the existence of rational first integrals of a given degree, bounds for the number of first integrals on families of vector fields, and a generalization of Darboux's criteria. We also provide a new proof of Gomez--Mont's result on foliations...

Currently displaying 61 – 67 of 67

Previous Page 4