Page 1

Displaying 1 – 8 of 8

Showing per page

La mesure d’équilibre d’un endomorphisme de k ( )

Xavier Buff (2004/2005)

Séminaire Bourbaki

Soit f un endomorphisme holomorphe de k ( ) . Je présenterai une construction géométrique, due à Briend et Duval, d’une mesure de probabilité μ ayant les propriétés suivantes : μ reflète la distribution des préimages des points en dehors d’un ensemble exceptionnel algébrique, les points périodiques répulsifs de f s’équidistribuent par rapport à μ et μ est l’unique mesure d’entropie maximale de f .

Labeled Rauzy classes and framed translation surfaces

Corentin Boissy (2013)

Annales de l’institut Fourier

In this paper, we compare two definitions of Rauzy classes. The first one was introduced by Rauzy and was in particular used by Veech to prove the ergodicity of the Teichmüller flow. The second one is more recent and uses a “labeling” of the underlying intervals, and was used in the proof of some recent major results about the Teichmüller flow.The Rauzy diagrams obtained from the second definition are coverings of the initial ones. In this paper, we give a formula that gives the degree of this covering.This...

Linear Fractional Recurrences: Periodicities and Integrability

Eric Bedford, Kyounghee Kim (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Linear fractional recurrences are given as z n + k = A ( z ) / B ( z ) , where A ( z ) and B ( z ) are linear functions of z n , z n + 1 , , z n + k - 1 . In this article we consider two questions about these recurrences: (1) Find A ( z ) and B ( z ) such that the recurrence is periodic; and (2) Find (invariant) integrals in case the induced birational map has quadratic degree growth. We approach these questions by considering the induced birational map and determining its dynamical degree. The first theorem shows that for each k there are k -step linear fractional recurrences...

Linearization of germs: regular dependence on the multiplier

Stefano Marmi, Carlo Carminati (2008)

Bulletin de la Société Mathématique de France

We prove that the linearization of a germ of holomorphic map of the type F λ ( z ) = λ ( z + O ( z 2 ) ) has a 𝒞 1 -holomorphic dependence on the multiplier λ . 𝒞 1 -holomorphic functions are 𝒞 1 -Whitney smooth functions, defined on compact subsets and which belong to the kernel of the ¯ operator. The linearization is analytic for | λ | 1 and the unit circle  𝕊 1 appears as a natural boundary (because of resonances,i.e.roots of unity). However the linearization is still defined at most points of  𝕊 1 , namely those points which lie “far enough from...

Local dynamics of holomorphic diffeomorphisms

Filippo Bracci (2004)

Bollettino dell'Unione Matematica Italiana

This is a survey about local holomorphic dynamics, from Poincaré's times to nowadays. Some new ideas on how to relate discrete dynamics to continuous dynamics are also introduced. It is the text of the talk given by the author at the XVII UMI Congress at Milano.

Currently displaying 1 – 8 of 8

Page 1