Parabolic curves for diffeomorphisms in C2.
We study the parameter space of unicritical polynomials . For complex parameters, we prove that for Lebesgue almost every , the map is either hyperbolic or infinitely renormalizable. For real parameters, we prove that for Lebesgue almost every , the map is either hyperbolic, or Collet–Eckmann, or infinitely renormalizable. These results are based on controlling the spacing between consecutive elements in the “principal nest” of parapuzzle pieces.
We prove that any Lattès map can be approximated by strictly postcritically finite rational maps which are not Lattès maps.
The general element of a pencil of Cod 1 foliation in CP(3) either has an invariant surface or contains a subfoliation by algebraic curves.
Nous donnons une condition suffisante pour l’existence de points périodiques pour une application birationnelle de . Sous cette hypothèse, une estimation précise du nombre de points périodiques de période fixée est obtenue. Nous donnons une application de ce résultat à l’étude dynamique de ces applications, en calculant explicitement l’auto-intersection de leur courant invariant naturellement associé. Nos résultats reposent essentiellement sur le théorème de Bézout donnant le cardinal de l’intersection...
We prove that the Julia set of a rational map of the Riemann sphere satisfying the Collet-Eckmann condition and having no parabolic periodic point is mean porous, if it is not the whole sphere. It follows that the Minkowski dimension of the Julia set is less than 2.
The preperiodic dynatomic curve is the closure in ℂ² of the set of (c,z) such that z is a preperiodic point of the polynomial with preperiod n and period p (n,p ≥ 1). We prove that each has exactly d-1 irreducible components, which are all smooth and have pairwise transverse intersections at the singular points of . We also compute the genus of each component and the Galois group of the defining polynomial of .