Nonstationary normal forms and rigidity of group actions.
In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part which ensures that if such a perturbation of is formally conjugate to then it is also holomorphically conjugate to it. We study the normal form problem relatively to . We give a condition on that ensures that there...
Let Γ be a finite subgroup of GL(n, C). This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in Cn and on the group of germs of holomorphic diffeomorphisms of (Cn, 0). We prove a theorem of invariant conjugacy to a normal form and linearization for the subspace of invariant germs of holomorphic vector fields and we give a description of this type of normal forms in dimension n = 2.
We study formal and analytic normal forms of radial and Hamiltonian vector fields on Poisson manifolds near a singular point.
We explore the convergence/divergence of the normal form for a singularity of a vector field on with nilpotent linear part. We show that a Gevrey- vector field with a nilpotent linear part can be reduced to a normal form of Gevrey- type with the use of a Gevrey- transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.
We establish a Poincaré-Dulac theorem for sequences of holomorphic contractions whose differentials split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of . In this context, our normalization result allows to estimate precisely the distortions of ellipsoids...
We present a geometric proof of the Poincaré-Dulac Normalization Theorem for analytic vector fields with singularities of Poincaré type. Our approach allows us to relate the size of the convergence domain of the linearizing transformation to the geometry of the complex foliation associated to the vector field.