Page 1

Displaying 1 – 12 of 12

Showing per page

Integrable analytic vector fields with a nilpotent linear part

Xianghong Gong (1995)

Annales de l'institut Fourier

We study the normalization of analytic vector fields with a nilpotent linear part. We prove that such an analytic vector field can be transformed into a certain form by convergent transformations when it has a non-singular formal integral. We then prove that there are smoothly linearizable parabolic analytic transformations which cannot be embedded into the flows of any analytic vector fields with a nilpotent linear part.

Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point

J. C. Tzou, A. Bayliss, B.J. Matkowsky, V.A. Volpert (2010)

Mathematical Modelling of Natural Phenomena

Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of ...

Intertwined mappings

Jean Ecalle, Bruno Vallet (2004)

Annales de la Faculté des sciences de Toulouse : Mathématiques

Invariant curves from symmetry

Michal Fečkan (1993)

Mathematica Bohemica

We show that certain symmetries of maps imply the existence of their invariant curves.

Currently displaying 1 – 12 of 12

Page 1