Page 1

Displaying 1 – 6 of 6

Showing per page

Resurgence in a Hamilton-Jacobi equation

Carme Olivé, David Sauzin, Tere M. Seara (2003)

Annales de l’institut Fourier

We study the resurgent structure associated with a Hamilton-Jacobi equation. This equation is obtained as the inner equation when studying the separatrix splitting problem for a perturbed pendulum via complex matching. We derive the Bridge equation, which encompasses infinitely many resurgent relations satisfied by the formal solution and the other components of the formal integral.

Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems

Yasuaki Hiraoka (2007)

Kybernetika

We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.

Currently displaying 1 – 6 of 6

Page 1