Page 1 Next

Displaying 1 – 20 of 32

Showing per page

On Chaotic Subthreshold Oscillations in a Simple Neuronal Model

M. Zaks (2010)

Mathematical Modelling of Natural Phenomena

In a simple FitzHugh-Nagumo neuronal model with one fast and two slow variables, a sequence of period-doubling bifurcations for small-scale oscillations precedes the transition into the spiking regime. For a wide range of values of the timescale separation parameter, this scenario is recovered numerically. Its relation to the singularly perturbed integrable system is discussed.

On limit cycles of piecewise differential systems formed by arbitrary linear systems and a class of quadratic systems

Aziza Berbache (2023)

Mathematica Bohemica

We study the continuous and discontinuous planar piecewise differential systems separated by a straight line and formed by an arbitrary linear system and a class of quadratic center. We show that when these piecewise differential systems are continuous, they can have at most one limit cycle. However, when the piecewise differential systems are discontinuous, we show that they can have at most two limit cycles, and that there exist such systems with two limit cycles. Therefore, in particular, we...

On the existence of chaotic behaviour of diffeomorphisms

Michal Fečkan (1993)

Applications of Mathematics

For several specific mappings we show their chaotic behaviour by detecting the existence of their transversal homoclinic points. Our approach has an analytical feature based on the method of Lyapunov-Schmidt.

Currently displaying 1 – 20 of 32

Page 1 Next