Displaying 41 – 60 of 177

Showing per page

Fibration of the phase space for the Korteweg-de Vries equation

Thomas Kappeler (1991)

Annales de l'institut Fourier

In this article we prove that the fibration of L 2 ( S 1 ) by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to N -gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.

Geometrical aspects of the Landau-Hall problem on the hiperbolic plane.

A. López Almorox, C. Tejero Prieto (2001)

RACSAM

Se discuten algunos aspectos del problema de Landau-Hall hiperbólico. El álgebra de Lie de las simetrías infinitesimales de este problema se da explícitamente, resultando ser isomorfa a so(2,1) y que sus invariantes Noether asociados son los momentos angulares hiperbólicos. Asimismo se desarrolla la formulación hamiltoniana, lo que nos permitirá obtener la variedad de órbitas de energía constante de este problema mediante técnicas de reducción simpléctica.

Hierarchy of integrable geodesic flows.

Peter Topalov (2000)

Publicacions Matemàtiques

A family of integrable geodesic flows is obtained. Any such a family corresponds to a pair of geodesically equivalent metrics.

Currently displaying 41 – 60 of 177