On classical intrinsically resonant formal perturbation theory
A proof of the C⁰-closing lemma for noninvertible discrete dynamical systems and its extension to the noncompact case are presented.
* Partially supported by Grant MM523/95 with Ministry of Science and Technologies.In this paper the classical Kirchhoff case of motion of a rigid body in an infinite ideal fluid is considered. Then for the corresponding Hamiltonian system on the zero integral level, the KAM theory conditions are checked. In contrast to the known similar results, there exists a curve in the bifurcation diagram along which the Kolmogorov’s condition vanishes for certain values of the parameters.
Nous étudions les aspects infinitésimaux du problème suivant. Soit un hamiltonien de dont la surface d’énergie borde un domaine compact et étoilé de volume identique à celui de la boule unité de . La surface d’énergie contient-elle une orbite périodique du système hamiltoniendont l’action soit au plus ?
We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses...
The existence of solutions with prescribed period for a class of Hamiltonian systems with a Keplerian singularity is discussed.
We consider perturbations of n-dimensional maps having homo-heteroclinic connections of compact normally hyperbolic invariant manifolds. We justify the applicability of the Poincaré-Melnikov method by following a geometric approach. Several examples are included.
We give sufficient conditions for asymptotic stability of a Markov operator governing the evolution of measures due to the action of randomly chosen dynamical systems. We show that the existence of an invariant measure for the transition operator implies the existence of an invariant measure for the semigroup generated by the system.