Structures localemnt plates dans certaines variétés symplectiques.
Soit une variété différentiable de dimension paire munie d’une 2-forme différentielle fermée générique . L’apparition éventuelle d’un lieu de dégénérescence du rang de est l’obstacle à ce que soit une structure symplectique. Nous étudions les propriétés géométriques de et nous caractérisons l’algèbre des hamiltoniennes admissibles de i.e. les fonctions différentiables qui possèdent un champ hamiltonien sur .
Dans cet article nous donnons les formes normales des sytèmes linéaires hamiltoniens antisymétriques accessibles . Nous construisons une stratification et une décomposition cellulaire analytique de , puis nous prouvons que son groupe d’homotopie est isomorphe à celui d’une grassmanienne. Ensuite, nous démontrons que est homotopiquement équivalent à l’espace des systèmes linéaires accessibles. En appliquant ces résultats topologiques, on peut prouver qu’il n’existe pas de paramétrisation continue...
The purpose of this note is to give an example of a singular Poisson structure on R2 which admits a symplectic realization by a Lie groupoid.
Dans un espace linéaire -fois étendu on peut introduire à l’aide de deux fonctions une certaine métrique (les propriétés de ces fonctions étant précisées dans l’article présenté), les courbes géodésiques au sens de centre métrique sont par le système correspondant des équations différentielles d’ordre deux sous les conditions initiales globalement déterminées. Dans le cas et pour une élection simple des fonctions considérées les sourbes géodésiques correspondent aux trajectories d’un point matériel...