Displaying 481 – 500 of 912

Showing per page

On implicit Lagrangian differential systems

S. Janeczko (2000)

Annales Polonici Mathematici

Let (P,ω) be a symplectic manifold. We find an integrability condition for an implicit differential system D' which is formed by a Lagrangian submanifold in the canonical symplectic tangent bundle (TP,ὡ).

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t , i ( T C ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains” i.e. ϕ i + N = ϕ i i and some N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t I R , i Z Z ( TC ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains" i.e. ϕ i + N = ϕ i i Z Z and some N I N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On periodic solutions of non-autonomous second order Hamiltonian systems

Xingyong Zhang, Yinggao Zhou (2010)

Applications of Mathematics

The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system u ¨ ( t ) = F ( t , u ( t ) ) , a.e. t [ 0 , T ] , u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 . Some new existence theorems are obtained by the least action principle.

On singularities of Hamiltonian mappings

Takuo Fukuda, Stanisław Janeczko (2008)

Banach Center Publications

The notion of an implicit Hamiltonian system-an isotropic mapping H: M → (TM,ω̇) into the tangent bundle endowed with the symplectic structure defined by canonical morphism between tangent and cotangent bundles of M-is studied. The corank one singularities of such systems are classified. Their transversality conditions in the 1-jet space of isotropic mappings are described and the corresponding symplectically invariant algebras of Hamiltonian generating functions are calculated.

On some completions of the space of hamiltonian maps

Vincent Humilière (2008)

Bulletin de la Société Mathématique de France

In one of his papers, C. Viterbo defined a distance on the set of Hamiltonian diffeomorphisms of 2 n endowed with the standard symplectic form ω 0 = d p d q . We study the completions of this space for the topology induced by Viterbo’s distance and some others derived from it, we study their different inclusions and give some of their properties. In particular, we give a convergence criterion for these distances that allows us to prove that the completions contain non-ordinary elements, as for example, discontinuous...

Currently displaying 481 – 500 of 912