Page 1

Displaying 1 – 9 of 9

Showing per page

Infinite queueing systems with tree structure

Lucie Fajfrová (2006)

Kybernetika

We focus on invariant measures of an interacting particle system in the case when the set of sites, on which the particles move, has a structure different from the usually considered set d . We have chosen the tree structure with the dynamics that leads to one of the classical particle systems, called the zero range process. The zero range process with the constant speed function corresponds to an infinite system of queues and the arrangement of servers in the tree structure is natural in a number...

Invariance of the Gibbs measure for the Benjamin–Ono equation

Yu Deng (2015)

Journal of the European Mathematical Society

In this paper we consider the periodic Benjemin-Ono equation.We establish the invariance of the Gibbs measure associated to this equation, thus answering a question raised in Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type spaces rougher than L 2 , extending the L 2 well-posedness result of Molinet [20].

Invariant measures for the defocusing Nonlinear Schrödinger equation

Nikolay Tzvetkov (2008)

Annales de l’institut Fourier

We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane 2 . We also prove an estimate giving some intuition to what may happen in 3 dimensions.

Investigations of retarded PDEs of second order in time using the method of inertial manifolds with delay

Alexander V. Rezounenko (2004)

Annales de l’institut Fourier

Inertial manifold with delay (IMD) for dissipative systems of second order in time is constructed. This result is applied to the study of different asymptotic properties of solutions. Using IMD, we construct approximate inertial manifolds containing all the stationary solutions and give a new characterization of the K-invariant manifold.

Currently displaying 1 – 9 of 9

Page 1