Large diffusivity finite-dimensional asymptotic behaviour of a semilinear wave equation.
The behavior of an ordinary differential equation for the low wave number velocity mode is analyzed. This equation was derived in [5] by an iterative process on the two-dimensional Navier-Stokes equations (NSE). It resembles the NSE in form, except that the kinematic viscosity is replaced by an iterated viscosity which is a partial sum, dependent on the low-mode velocity. The convergence of this sum as the number of iterations is taken to be arbitrarily large is explored. This leads to a limiting...
This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained...
This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained...
In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byproduct of our analysis, we give a global well-posedness and scattering result for the critical and super-critical...
In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction...