Page 1

Displaying 1 – 11 of 11

Showing per page

On inertial manifolds for reaction-diffusion equations on genuinely high-dimensional thin domains

M. Prizzi, K. P. Rybakowski (2003)

Studia Mathematica

We study a family of semilinear reaction-diffusion equations on spatial domains Ω ε , ε > 0, in l lying close to a k-dimensional submanifold ℳ of l . As ε → 0⁺, the domains collapse onto (a subset of) ℳ. As proved in [15], the above family has a limit equation, which is an abstract semilinear parabolic equation defined on a certain limit phase space denoted by H ¹ s ( Ω ) . The definition of H ¹ s ( Ω ) , given in the above paper, is very abstract. One of the objectives of this paper is to give more manageable characterizations...

On inhomogeneous self-similar measures and their L q spectra

Przemysław Liszka (2013)

Annales Polonici Mathematici

Let S i : d d for i = 1,..., N be contracting similarities, let ( p , . . . , p N , p ) be a probability vector and let ν be a probability measure on d with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on d such that μ = i = 1 N p i μ S i - 1 + p ν . We give satisfactory estimates for the lower and upper bounds of the L q spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular, we...

On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces

Diana Stoica, Mihail Megan (2012)

Czechoslovak Mathematical Journal

In this paper we study a general concept of nonuniform exponential dichotomy in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a variant for the stochastic case of some well-known results, of the deterministic case, due to R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some techniques used in the deterministic case for the study of asymptotic behavior...

On the controllability and stabilization of the linearized Benjamin-Ono equation

Felipe Linares, Jaime H. Ortega (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law which...

On the controllability and stabilization of the linearized Benjamin-Ono equation

Felipe Linares, Jaime H. Ortega (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law...

On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model

Dalibor Pražák, Josef Žabenský (2013)

Open Mathematics

We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.

On the dynamics of equations with infinite delay

Dalibor Pražák (2006)

Open Mathematics

We consider a system of ordinary differential equations with infinite delay. We study large time dynamics in the phase space of functions with an exponentially decaying weight. The existence of an exponential attractor is proved under the abstract assumption that the right-hand side is Lipschitz continuous. The dimension of the attractor is explicitly estimated.

Currently displaying 1 – 11 of 11

Page 1