-convergence of modified complex trigonometric sums.
We prove the boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function . Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.
Dick proved that all dyadic order 2 digital nets satisfy optimal upper bounds on the -discrepancy. We prove this for arbitrary prime base b with an alternative technique using Haar bases. Furthermore, we prove that all digital nets satisfy optimal upper bounds on the discrepancy function in Besov spaces with dominating mixed smoothness for a certain parameter range, and enlarge that range for order 2 digital nets. The discrepancy function in Triebel-Lizorkin and Sobolev spaces with dominating mixed...
Nowak and Stempak (2006) proposed a unified approach to the theory of Riesz transforms and conjugacy in the setting of multi-dimensional orthogonal expansions, and proved their boundedness on L². Following them, we give easy to check sufficient conditions for their boundedness on , 1 < p < ∞. We also discuss the symmetrized version of these transforms.
We consider the Schrödinger operators in where the nonnegative potential belongs to the reverse Hölder class for some . We obtain the optimal estimates for the operators and where . In particular we show that is a Calderón-Zygmund operator if and are Calderón-Zygmund operators if .
Let be the singular measure on the Heisenberg group supported on the graph of the quadratic function , where is a real symmetric matrix. If , we prove that the operator of convolution by on the right is bounded from to . We also study the type set of the measures , for , where is a cut-off function around the origin on . Moreover, for we characterize the type set of .
A measure is called -improving if it acts by convolution as a bounded operator from to for some q > p. Positive measures which are -improving are known to have positive Hausdorff dimension. We extend this result to complex -improving measures and show that even their energy dimension is positive. Measures of positive energy dimension are seen to be the Lipschitz measures and are characterized in terms of their improving behaviour on a subset of -functions.
- estimates are obtained for convolution operators by finite measures supported on curves in the Heisenberg group whose tangent vector at the origin is parallel to the centre of the group.
We consider a double analytic family of fractional integrals along the curve , introduced for α = 2 by L. Grafakos in 1993 and defined by , where ψ is a bump function on ℝ supported near the origin, , z,γ ∈ ℂ, Re γ ≥ 0, α ∈ ℝ, α ≥ 2. We determine the set of all (1/p,1/q,Re z) such that maps to boundedly. Our proof is based on product-type kernel arguments. More precisely, we prove that the kernel is a product kernel on ℝ², adapted to the curve ; as a consequence, we show that the operator...
We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by , where , w = (w₁,...,wₙ) ∈ ℂⁿ, , and η(w) = η₀(|w|²) with . We characterize the set of pairs (p,q) such that the convolution operator with ν is bounded. We also obtain -improving properties of measures supported on the graph of the function .
The commutator of a singular integral operator with homogeneous kernel Ω(x)/|x|ⁿ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that is a sufficient condition for the kth order commutator to be bounded on for all 1 < p < ∞. The corresponding maximal operator is also considered.
The boundedness is established for commutators generated by BMO(ℝⁿ) functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos-Stefanov condition.