norm convergence of rational operators on the unit circle.
Szabó, Zoltán (1998)
Mathematica Pannonica
R. J. Diperna, P. L. Lions, Y. Meyer (1991)
Annales de l'I.H.P. Analyse non linéaire
Alessio Martini, Detlef Müller (2013)
Studia Mathematica
Let L be a homogeneous sublaplacian on the 6-dimensional free 2-step nilpotent Lie group on three generators. We prove a theorem of Mikhlin-Hörmander type for the functional calculus of L, where the order of differentiability s > 6/2 is required on the multiplier.
G. Sampson (2006)
Studia Mathematica
We show in two dimensions that if , , p = 4/(2+η), a ≥ b ≥ 1̅ = (1,1), , then if η + α₁ + α₂ < 2, , j = 1,2. Our methods apply in all dimensions and also for more general kernels.
Akihito Uchiyama (1995)
Studia Mathematica
We prove that , where is the dyadic square function, is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.
R.-Q. Jia, K.-S. Lau, D.-X. Zhou (2001)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Dimitros G. Natsis, Časlav V. Stanojević (1990)
Publications de l'Institut Mathématique
Dashan Fan, Yibiao Pan (1997)
Publicacions Matemàtiques
In this paper we study a singular integral operator T with rough kernel. This operator has singularity along sets of the form {x = Q(|y|)y'}, where Q(t) is a polynomial satisfying Q(0) = 0. We prove that T is a bounded operator in the space L2(Rn), n ≥ 2, and this bound is independent of the coefficients of Q(t).We also obtain certain Hardy type inequalities related to this operator.
Xavier Tolsa (2004)
Publicacions Matemàtiques
Let m be a Radon measure on C without atoms. In this paper we prove that if the Cauchy transform is bounded in L2(m), then all 1-dimensional Calderón-Zygmund operators associated to odd and sufficiently smooth kernels are also bounded in L2(m).
S.L. Lee, Roger C.E. Tan, W.S. Tang (1991/1992)
Numerische Mathematik
Michel Mendès France (1984/1985)
Groupe d'étude en théorie analytique des nombres
Peter Sjögren (1973/1974)
Séminaire Choquet. Initiation à l'analyse
J. Dini, P. Maroni (1990)
Annales Polonici Mathematici
Sylvia Dobyinsky (1995)
Revista Matemática Iberoamericana
Nous définissons un produit renormalisé par ondelettes qui améliore, dans certains cadres fonctionnels, les propriétés du produit usuel de deux fonctions. Grâce à cette technique de renormalisation du produit nous obtenons une démonstration par ondelettes d'une version précisée du théorème du Jacobien. Finalement nous établissons le lien entre ce produit renormalisé par ondelettes et les paraproduits de J.M. Bony.
R. Edwards, E. Hewitt, K. Ross (1972)
Studia Mathematica
Marianne Clausel (2012)
ESAIM: Probability and Statistics
In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.
Marianne Clausel (2012)
ESAIM: Probability and Statistics
In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.
Paul Ressel (1974)
Manuscripta mathematica
David F. Walnut (1993)
Monatshefte für Mathematik
Kolountzakis, Mihail (1998)
The Electronic Journal of Combinatorics [electronic only]