Short proofs for the inequalities of Szegö, Markov and Zygmund
Page 1
Manfred v. Golitschek (1989)
Banach Center Publications
Qazi, M. A., Rahman, Q. I. (2007)
Serdica Mathematical Journal
2000 Mathematics Subject Classification: 26C05, 26C10, 30A12, 30D15, 42A05, 42C05.In this paper we present some inequalities about the moduli of the coefficients of polynomials of the form f (x) : = еn = 0nan xn, where a0, ј, an О C. They can be seen as generalizations, refinements or analogues of the famous inequality of P. L. Chebyshev, according to which |an| Ј 2n-1 if | еn = 0n an xn | Ј 1 for -1 Ј x Ј 1.
Azar, Laith Emil (2004)
International Journal of Mathematics and Mathematical Sciences
Tomovski, Živorad (2003)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Xhevat Z. Krasniqi (2013)
Archivum Mathematicum
In this paper we introduce some new modified cosine sums and then using these sums we study -convergence of trigonometric cosine series.
Sten Kaisjer (1978)
Studia Mathematica
Wayne Lawton (2012)
Acta Arithmetica
Shah, Tariq, Ullah, Ehsan (2009)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Jean-Paul Allouche, Michel Mendès France (1985)
Bulletin de la Société Mathématique de France
Jean-François Méla (1964)
Annales de l'institut Fourier
Les ensembles “propres” pour une suite de Sidon sont caractérisés par une propriété de convergence des séries lacunaires à spectre dans la suite.
J. Bourgain (1986)
Acta Arithmetica
Page 1