Displaying 141 – 160 of 229

Showing per page

The Bohr-Pál theorem and the Sobolev space W 1 / 2

Vladimir Lebedev (2015)

Studia Mathematica

The well-known Bohr-Pál theorem asserts that for every continuous real-valued function f on the circle there exists a change of variable, i.e., a homeomorphism h of onto itself, such that the Fourier series of the superposition f ∘ h converges uniformly. Subsequent improvements of this result imply that actually there exists a homeomorphism that brings f into the Sobolev space W 1 / 2 ( ) . This refined version of the Bohr-Pál theorem does not extend to complex-valued functions. We show that if α < 1/2,...

Topological Dichotomy and Unconditional Convergence

Lefevre, Pascal (1999)

Serdica Mathematical Journal

In this paper, we give a criterion for unconditional convergence with respect to some summability methods, dealing with the topological size of the set of choices of sign providing convergence. We obtain similar results for boundedness. In particular, quasi-sure unconditional convergence implies unconditional convergence.

Currently displaying 141 – 160 of 229