On a Class of Three Dimensional Radially Symmetric Positive Definite Functions.
On the real line, let the Fourier transform of kn be k'n(ξ) = k'(ξ-n) where k'(ξ) is a smooth compactly supported function. Consider the bilinear operators Sn(f, g)(x) = ∫ f(x+y)g(x-y)kn(y) dy. If 2 ≤ p, q ≤ ∞, with 1/p + 1/q = 1/2, I prove thatΣ∞n=-∞ ||Sn(f,g)||22 ≤ C2||f||p2||g||q2.The constant C depends only upon k.
Asymptotic properties of the Discrete Fourier Transform spectrum of a complex monochromatic oscillation with frequency randomly distorted at the observation times t=0,1,..., n-1 by a series of independent and identically distributed fluctuations is investigated. It is proved that the second moments of the spectrum at the discrete Fourier frequencies converge uniformly to zero as n → ∞ for certain frequency fluctuation distributions. The observed effect occurs even for frequency fluctuations with...
We consider some applications of the singular integral equation of the second kind of Fox. Some new solutions to Fox’s integral equation are discussed in relation to number theory.
We consider an elliptic pseudodifferential equation in a multi-dimensional cone, and using the wave factorization concept for an elliptic symbol we describe a general solution of such equation in Sobolev-Slobodetskii spaces. This general solution depends on some arbitrary functions, their quantity being determined by an index of the wave factorization. For identifying these arbitrary functions one needs some additional conditions, for example, boundary conditions. Simple boundary value problems,...