Orlicz bounds for operators of restricted weak type
It is shown that if T is a sublinear translation invariant operator of restricted weak type (1,1) acting on L¹(𝕋), then T maps simple functions in L log L(𝕋) boundedly into L¹(𝕋).
It is shown that if T is a sublinear translation invariant operator of restricted weak type (1,1) acting on L¹(𝕋), then T maps simple functions in L log L(𝕋) boundedly into L¹(𝕋).
We prove basic properties of Orlicz-Morrey spaces and give a necessary and sufficient condition for boundedness of the Hardy-Littlewood maximal operator M from one Orlicz-Morrey space to another. For example, if f ∈ L(log L)(ℝⁿ), then Mf is in a (generalized) Morrey space (Example 5.1). As an application of boundedness of M, we prove the boundedness of generalized fractional integral operators, improving earlier results of the author.
In this paper, the author introduces parabolic generalized local Morrey spaces and gets the boundedness of a large class of parabolic rough operators on them. The author also establishes the parabolic local Campanato space estimates for their commutators on parabolic generalized local Morrey spaces. As its special cases, the corresponding results of parabolic sublinear operators with rough kernel and their commutators can be deduced, respectively. At last, parabolic Marcinkiewicz operator which...
We introduce generalized Campanato spaces on a probability space (Ω,ℱ,P), where p ∈ [1,∞) and ϕ: (0,1] → (0,∞). If p = 1 and ϕ ≡ 1, then . We give a characterization of the set of all pointwise multipliers on .
Let w be a non-negative measurable function defined on the positive semi-axis and satisfying the reverse Hölder inequality with exponents 0 < α < β. In the present paper, sharp estimates of the compositions of the power means , x > 0, are obtained for various exponents α. As a result, for the function w a property of self-improvement of summability exponents is established.
We use the Calderón Maximal Function to prove the Kato-Ponce Product Rule Estimate and the Christ-Weinstein Chain Rule Estimate for the Hajłasz gradient on doubling measure metric spaces.
In this paper, we give an overview of some topics involving behavior of homeomorphisms and ways in which real analysis can arise in geometric settings.
The aim of these lectures is to present a survey of some results on spaces of functions with dominating mixed smoothness. These results concern joint work with Winfried Sickel and Miroslav Krbec as well as the work which has been done by Jan Vybíral within his thesis. The first goal is to discuss the Fourier-analytical approach, equivalent characterizations with the help of derivatives and differences, local means, atomic and wavelet decompositions. Secondly, on this basis we study approximation...
On décrit de diverses façons les fermetures respectives, dans l’espace et dans sa version locale , de l’ensemble des fonctions à support compact et de l’ensemble des fonctions à support compact. Certains de ces résultats sont nouveaux; d’autres, considérés comme classiques, ne semblent pas avoir fait l’objet de publication. Des contre-exemples permettent de vérifier la diversité des sous-espaces considérés.
Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from to (1/(α+1) < p < ∞) and is of weak type (1,1), where is the classical Hardy space. As a consequence we deduce that the Riesz means of a function converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on whenever 1/(α+1) < p < ∞. Thus, in case , the Riesz means converge...
Let be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in , Sobolev, and some new Hardy spaces naturally associated to . First, we show that the...
We study weighted function spaces of Lebesgue, Besov and Triebel-Lizorkin type where the weight function belongs to some Muckenhoupt class. The singularities of functions in these spaces are characterised by means of envelope functions.
2000 Mathematics Subject Classification: 42B20, 42B25, 42B35We consider the generalized shift operator, generated by the Laplace- Bessel differential operator [...] The Bn -maximal functions and the Bn - Riesz potentials, generated by the Laplace-Bessel differential operator ∆Bn are investigated. We study the Bn - Riesz potentials in the Bn - Morrey spaces and Bn - BMO spaces. An inequality of Sobolev - Morrey type is established for the Bn - Riesz potentials.* This paper has been partially supported...
Let be a Schrödinger operator and let be a Schrödinger type operator on , where is a nonnegative potential belonging to certain reverse Hölder class...
Let be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x’,y ∈ X, , and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X, . Let ε ∈ (0,θ], |s| < ε and maxd/(d+ε),d/(d+s+ε) < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces and establishes their frame characterizations by first establishing a Plancherel-Pólya-type inequality...
New norms for some distributions on spaces of homogeneous type which include some fractals are introduced. Using inhomogeneous discrete Calderón reproducing formulae and the Plancherel-Pólya inequalities on spaces of homogeneous type, the authors prove that these norms give a new characterization for the Besov and Triebel-Lizorkin spaces with p, q > 1 and can be used to introduce new inhomogeneous Besov and Triebel-Lizorkin spaces with p, q ≤ 1 on spaces of homogeneous type. Moreover, atomic...
In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, and , where is the weighted Lorentz space and is a rearrangement invariant space in . The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of weights.