Previous Page 3

Displaying 41 – 47 of 47

Showing per page

On the uniform convergence and L¹-convergence of double Walsh-Fourier series

Ferenc Móricz (1992)

Studia Mathematica

In 1970 C. W. Onneweer formulated a sufficient condition for a periodic W-continuous function to have a Walsh-Fourier series which converges uniformly to the function. In this paper we extend his results from single to double Walsh-Fourier series in a more general setting. We study the convergence of rectangular partial sums in L p -norm for some 1 ≤ p ≤ ∞ over the unit square [0,1) × [0,1). In case p = ∞, by L p we mean C W , the collection of uniformly W-continuous functions f(x, y), endowed with the...

Oscillating multipliers on the Heisenberg group

E. K. Narayanan, S. Thangavelu (2001)

Colloquium Mathematicae

Let ℒ be the sublaplacian on the Heisenberg group Hⁿ. A recent result of Müller and Stein shows that the operator - 1 / 2 s i n is bounded on L p ( H ) for all p satisfying |1/p - 1/2| < 1/(2n). In this paper we show that the same operator is bounded on L p in the bigger range |1/p - 1/2| < 1/(2n-1) if we consider only functions which are band limited in the central variable.

Currently displaying 41 – 47 of 47

Previous Page 3