Fourier-Bessel functions of singular continuous measures and their many asymptotics.
We construct wavelet-type frames associated with the expansive matrix dilation on the Anisotropic Triebel-Lizorkin spaces. We also show the a.e. convergence of the frame expansion which includes multi-wavelet expansion as a special case.
We consider two types of Besov spaces on the closed snowflake, defined by traces and with the help of the homeomorphic map from the interval [0,3]. We compare these spaces and characterize them in terms of Daubechies wavelets.
It is known that Gabor expansions do not converge unconditionally in and that cannot be characterized in terms of the magnitudes of Gabor coefficients. By using a combination of Littlewood-Paley and Gabor theory, we show that can nevertheless be characterized in terms of Gabor expansions, and that the partial sums of Gabor expansions converge in -norm.