On the -adic spectral analysis and multiwavelet on .
We investigate convergence and divergence of specific subsequences of partial sums with respect to the Walsh system on martingale Hardy spaces. By using these results we obtain a relationship of the ratio of convergence of the partial sums of the Walsh series and the modulus of continuity of the martingale. These conditions are in a sense necessary and sufficient.
MSC 2010: 42C40, 94A12On the blind source separation problem, there is a method to use the quotient function of complex valued time-frequency informations of two ob-served signals. By studying the quotient function, we can estimate the number of sources under some assumptions. In our previous papers, we gave a mathematical formulation which is available for the sources with-out time delay. However, in general, we can not ignore the time delay. In this paper, we will reformulate our basic theorems...
We seek to demonstrate a connection between refinable quasi-affine systems and the discrete wavelet transform known as the à trous algorithm. We begin with an introduction of the bracket product, which is the major tool in our analysis. Using multiresolution operators, we then proceed to reinvestigate the equivalence of the duality of refinable affine frames and their quasi-affine counterparts associated with a fairly general class of scaling functions that includes the class of compactly supported...
It is proved that if is a complete orthonormal system of bounded functions and ɛ>0, then there exists a measurable set E ⊂ [0,1] with measure |E|>1-ɛ, a measurable function μ(x), 0 < μ(x) ≤ 1, μ(x) ≡ 1 on E, and a series of the form , where for all q>2, with the following properties: 1. For any p ∈ [1,2) and there are numbers , k=1,2,…, = 1 or 0, such that 2. For every p ∈ [1,2) and there are a function with g(x) = f(x) on E and numbers , k=1,2,…, or 0, such that ,...
Properties of representation systems with respect to summation methods are studied. For a given representation system with respect to a given summation method we study, in particular, the question of the stability of that property after deleting finitely many elements. As a consequence we obtain the existence of null series for the systems with respect to a given method of summation.
We investigate when the trigonometric conjugate to the periodic general Franklin system is a basis in C(𝕋). For this, we find some necessary and some sufficient conditions.
In 1970 C. W. Onneweer formulated a sufficient condition for a periodic W-continuous function to have a Walsh-Fourier series which converges uniformly to the function. In this paper we extend his results from single to double Walsh-Fourier series in a more general setting. We study the convergence of rectangular partial sums in -norm for some 1 ≤ p ≤ ∞ over the unit square [0,1) × [0,1). In case p = ∞, by we mean , the collection of uniformly W-continuous functions f(x, y), endowed with the...
We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.