Previous Page 2

Displaying 21 – 39 of 39

Showing per page

Remark on the inequality of F. Riesz

W. Łenski (2005)

Banach Center Publications

We prove F. Riesz’ inequality assuming the boundedness of the norm of the first arithmetic mean of the functions | φ | p with p ≥ 2 instead of boundedness of the functions φₙ of an orthonormal system.

Results on spline-Fourier and Ciesielski-Fourier series

Ferenc Weisz (2006)

Banach Center Publications

Some recent results on spline-Fourier and Ciesielski-Fourier series are summarized. The convergence of spline Fourier series and the basis properties of the spline systems are considered. Some classical topics, that are well known for trigonometric and Walsh-Fourier series, are investigated for Ciesielski-Fourier series, such as inequalities for the Fourier coefficients, convergence a.e. and in norm, Fejér and θ-summability, strong summability and multipliers. The connection between Fourier series...

Ridgelet transform on tempered distributions

R. Roopkumar (2010)

Commentationes Mathematicae Universitatis Carolinae

We prove that ridgelet transform R : 𝒮 ( 2 ) 𝒮 ( 𝕐 ) and adjoint ridgelet transform R * : 𝒮 ( 𝕐 ) 𝒮 ( 2 ) are continuous, where 𝕐 = + × × [ 0 , 2 π ] . We also define the ridgelet transform on the space 𝒮 ' ( 2 ) of tempered distributions on 2 , adjoint ridgelet transform * on 𝒮 ' ( 𝕐 ) and establish that they are linear, continuous with respect to the weak * -topology, consistent with R , R * respectively, and they satisfy the identity ( * ) ( u ) = u , u 𝒮 ' ( 2 ) .

Riesz sequences and arithmetic progressions

Itay Londner, Alexander Olevskiĭ (2014)

Studia Mathematica

Given a set of positive measure on the circle and a set Λ of integers, one can ask whether E ( Λ ) : = e λ Λ i λ t is a Riesz sequence in L²(). We consider this question in connection with some arithmetic properties of the set Λ. Improving a result of Bownik and Speegle (2006), we construct a set such that E(Λ) is never a Riesz sequence if Λ contains an arithmetic progression of length N and step = O ( N 1 - ε ) with N arbitrarily large. On the other hand, we prove that every set admits a Riesz sequence E(Λ) such that Λ does contain...

Riesz transforms for the Dunkl Ornstein-Uhlenbeck operator

Adam Nowak, Luz Roncal, Krzysztof Stempak (2010)

Colloquium Mathematicae

We propose a definition of Riesz transforms associated to the Ornstein-Uhlenbeck operator based on the Dunkl Laplacian. In the case related to the group ℤ ₂ it is proved that the Riesz transform is bounded on the corresponding L p spaces, 1 < p < ∞.

Rotation invariant subspaces of Besov and Triebel-Lizorkin space: compactness of embeddings, smoothness and decay of functions.

Leszek Skrzypczak (2002)

Revista Matemática Iberoamericana

Let H be a closed subgroup of the group of rotation of Rn. The subspaces of distributions of Besov-Lizorkin-Triebel type invariant with respect to natural action of H are investigated. We give sufficient and necessary conditions for the compactness of the Sobolev-type embeddings. It is also proved that H-invariance of function implies its decay properties at infinity as well as the better local smoothness. This extends the classical Strauss lemma. The main tool in our investigations is an adapted...

Currently displaying 21 – 39 of 39

Previous Page 2