On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1
Let P(z,β) be the Poisson kernel in the unit disk , and let be the λ -Poisson integral of f, where . We let be the normalization . If λ >0, we know that the best (regular) regions where converges to f for a.a. points on ∂ are of nontangential type. If λ =0 the situation is different. In a previous paper, we proved a result concerning the convergence of toward f in an weakly tangential region, if and p > 1. In the present paper we will extend the result to symmetric spaces X of...