Survey of spectra of Laplacians on finite symmetric spaces.
Terras, Audrey (1996)
Experimental Mathematics
Qihong Fan (1995)
Studia Mathematica
The symbol calculus on the upper half plane is studied from the viewpoint of the Kirillov theory of orbits. The main result is the -estimates for Fuchs type pseudodifferential operators.
Yves Benoist, Toshiyuki Kobayashi (2015)
Journal of the European Mathematical Society
Let be a semisimple algebraic Lie group and a reductive subgroup. We find geometrically the best even integer for which the representation of in is almost . As an application, we give a criterion which detects whether this representation is tempered.
Jacques Carmona (1997)
Journal für die reine und angewandte Mathematik
R. J. Beerends (1988)
Compositio Mathematica
Siddhartha Sahi (1992)
Compositio Mathematica
Richard Penney, Roman Urban (2013)
Studia Mathematica
Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to , k>1. We consider a class of second order left-invariant differential operators on S of the form , where , and for each is left-invariant second order differential operator on N and , where Δ is the usual Laplacian on . Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively) we obtain an...
Jarosław Sołowiej (1994)
Colloquium Mathematicae
Platonov, S.S. (2005)
Sibirskij Matematicheskij Zhurnal
R.J. Beerends (1987)
Mathematische Annalen
Mohanty, Parasar, Ray, Swagato K., Sarkar, Rudra P., Sitaram, Alladi (2004)
Journal of Lie Theory
Jean-Philippe Anker, Philippe Bougerol, Thierry Jeulin (2002)
Revista Matemática Iberoamericana
G. Van Dijk, M. Poel (1990)
Compositio Mathematica
Hansmartin Zeuner (1986)
Mathematische Annalen
C. Morpurgo (1996)
Geometric and functional analysis
Werner Hoffmann (1987)
Journal für die reine und angewandte Mathematik
G. Van Dijk, M. Poel (1986)
Compositio Mathematica
H. Thorleifsson (1996)
Mathematica Scandinavica
E. P. van den Ban (1988)
Annales scientifiques de l'École Normale Supérieure
Eric Stade (1994)
Annales de l'institut Fourier
In this paper we derive, using the Gauss summation theorem for hypergeometric series, a simple integral expression for the reciprocal of Euler’s beta function. This expression is similar in form to several well-known integrals for the beta function itself.We then apply our new formula to the study of Whittaker functions, which are special functions that arise in the Fourier theory for automorphic forms on the general linear group. Specifically, we deduce explicit integral representations of “fundamental”...