Displaying 101 – 120 of 149

Showing per page

Continuous Measures on Homogenous Spaces

Michael Björklund, Alexander Fish (2009)

Annales de l’institut Fourier

In this paper we generalize Wiener’s characterization of continuous measures to compact homogenous manifolds. In particular, we give necessary and sufficient conditions on probability measures on compact semisimple Lie groups and nilmanifolds to be continuous. The methods use only simple properties of heat kernels.

Continuous wavelet transform on semisimple Lie groups and inversion of the Abel transform and its dual.

K. Trimèche (1996)

Collectanea Mathematica

In this work we define and study wavelets and continuous wavelet transform on semisimple Lie groups G of real rank l. We prove for this transform Plancherel and inversion formulas. Next using the Abel transform A on G and its dual A*, we give relations between the continuous wavelet transform on G and the classical continuous wavelet transform on Rl, and we deduce the formulas which give the inverse operators of the operators A and A*.

Contractive homomorphisms of measure algebras and Fourier algebras

Ross Stokke (2012)

Studia Mathematica

We show that the dual version of our factorization [J. Funct. Anal. 261 (2011)] of contractive homomorphisms φ: L¹(F) → M(G) between group/measure algebras fails to hold in the dual, Fourier/Fourier-Stieltjes algebra, setting. We characterize the contractive w*-w* continuous homomorphisms between measure algebras and (reduced) Fourier-Stieltjes algebras. We consider the problem of describing all contractive homomorphisms φ: L¹(F) → L¹(G).

Convolution operators on Hardy spaces

Chin-Cheng Lin (1996)

Studia Mathematica

We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces H p ( G ) , where G is a homogeneous group.

Convolution operators on the dual of hypergroup algebras

Ali Ghaffari (2003)

Commentationes Mathematicae Universitatis Carolinae

Let X be a hypergroup. In this paper, we define a locally convex topology β on L ( X ) such that ( L ( X ) , β ) * with the strong topology can be identified with a Banach subspace of L ( X ) * . We prove that if X has a Haar measure, then the dual to this subspace is L C ( X ) * * = cl { F L ( X ) * * ; F has compact carrier}. Moreover, we study the operators on L ( X ) * and L 0 ( X ) which commute with translations and convolutions. We prove, among other things, that if wap ( L ( X ) ) is left stationary, then there is a weakly compact operator T on L ( X ) * which commutes with convolutions if and...

Convolution Products in L1(R+), Integral Transforms and Fractional Calculus

Miana, Pedro (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 43A20, 26A33 (main), 44A10, 44A15We prove equalities in the Banach algebra L1(R+). We apply them to integral transforms and fractional calculus.* Partially supported by Project BFM2001-1793 of the MCYT-DGI and FEDER and Project E-12/25 of D.G.A.

Currently displaying 101 – 120 of 149