Markov operators: applications to diffusion processes and population dynamics
This note contains a survey of recent results concerning asymptotic properties of Markov operators and semigroups. Some biological and physical applications are given.
This note contains a survey of recent results concerning asymptotic properties of Markov operators and semigroups. Some biological and physical applications are given.
We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.
We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.
This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm...
In this paper we propose and analyse a model of the competition between cancer and the acquired immune system. The model is a system of integro-differential bilinear equations. The role of the humoral response is analyzed. The simulations are related to the immunotherapy of tumors with antibodies.
We use Fourier multiplier theorems to establish maximal regularity results for a class of integro-differential equations with infinite delay in Banach spaces. Concrete equations of this type arise in viscoelasticity theory. Results are obtained for periodic solutions in the vector-valued Lebesgue and Besov spaces. An application to semilinear equations is considered.
Several abstract model problems of elliptic and parabolic type with inhomogeneous initial and boundary data are discussed. By means of a variant of the Dore-Venni theorem, real and complex interpolation, and trace theorems, optimal -regularity is shown. By means of this purely operator theoretic approach, classical results on -regularity of the diffusion equation with inhomogeneous Dirichlet or Neumann or Robin condition are recovered. An application to a dynamic boundary value problem with surface...
MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversaryIn the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann-Liouville fractional derivative, the Caputo fractional...