Boundary value problems of the theory of analytic functions with displacements.
Let be the space of all complex m × n matrices. The generalized unit disc in is >br> . Here is the unit matrix. If 1 ≤ p < ∞ and α > -1, then is defined to be the space , where is the Lebesgue measure in , and is the subspace of holomorphic functions. In [8,9] M. M. Djrbashian and A. H. Karapetyan proved that, if (for 1 < p < ∞) and Re β ≥ α (for p = 1), then where is the integral operator defined by (0.13)-(0.14). In the present paper, given 1 ≤ p <...
In this paper, the boundedness of the Riesz potential generated by generalized shift operator from the spaces to the spaces is examined.
In mathematical models of some physical phenomena a new class of nonlinear Volterra equations appears ([5],[6]). The equations belonging to this class have u = 0 as a solution (trivial solution), but with respect to their physical meaning, nonnegative nontrivial solutions are of prime importance.
2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05The Caputo fractional derivative is one of the most used definitions of a fractional derivative along with the Riemann-Liouville and the Grünwald- Letnikov ones. Whereas the Riemann-Liouville definition of a fractional derivative is usually employed in mathematical texts and not so frequently in applications, and the Grünwald-Letnikov definition – for numerical approximation of both Caputo and Riemann-Liouville fractional derivatives,...