Construction of Lyapunov functionals for linear Volterra integrodifferential equations and stability of delay systems.
For an analytic functional on , we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in . We determine the directions in which every solution can be continued analytically, by using the characteristic set.
On donne un critère très simple de continuité des opérateurs définis par des intégrales singulières sur les espaces de Besov homogènes pour . Quelques exemples, utilisant notamment l’opérateur de paraproduit, illustrent ensuite l’emploi de ce critère.
The problem of continuous dependence for inverses of fundamental matrices in the case when uniform convergence is violated is presented here.
Transport phenomena of minority carriers in quasi neutral regions of heavily doped semiconductors are considered for the case of one-dimensional stationary flow and their study is reduced to a Fredholm integral equation of the second kind, the kernel and the known term of which are built from known functions of the doping arbitrarily distributed in space. The advantage of the method consists, among other things, in having all the coefficients of the differential equations and of the boundary conditions...
In this paper, we deal with a system of integral algebraic equations of the Hessenberg type. Using a new index definition, the existence and uniqueness of a solution to this system are studied. The well-known piecewise continuous collocation methods are used to solve this system numerically, and the convergence properties of the perturbed piecewise continuous collocation methods are investigated to obtain the order of convergence for the given numerical methods. Finally, some numerical experiments...
We provide a semilocal convergence analysis for Newton-type methods using our idea of recurrent functions in a Banach space setting. We use Zabrejko-Zinčenko conditions. In particular, we show that the convergence domains given before can be extended under the same computational cost. Numerical examples are also provided to show that we can solve equations in cases not covered before.