Eine Eigenwertabschätzung für Integraloperatoren mit stochastischen Kernen
In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class for all and, as a consequence, the Hölder regularity of the solution . is an elliptic second order operator with discontinuous coefficients and the lower order terms belong to suitable Lebesgue spaces.
A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
The aim of this paper is to present an existence theorem for the operator equation of Hammerstein type with the discontinuous semimonotone operator . Then the result is used to prove the existence of solution of the equations of Urysohn type. Some examples in the theory of nonlinear equations in are given for illustration.