Error minimization in approximate solution of integral equations
Let () be a compact set; assume that each ball centered on the boundary of meets in a set of positive Lebesgue measure. Let be the class of all continuously differentiable real-valued functions with compact support in and denote by the area of the unit sphere in . With each we associate the function of the variable (which is continuous in and harmonic in ). depends only on the restriction of to the boundary of . This gives rise to a linear operator acting from...
Dans cet article nous étudions la série génératrice des poids alternés d’une moyenne de convolution induite par un processus de diffusion. Nous montrons que celle-ci est une fonction méromorphe, naturellement liée à un certain opérateur compact. Cette fonction est simplement égale à , lorsque le déterminant de Fredholm de cet opérateur existe, et nous la précisons dans les autres cas.
We establish the existence of solutions of an intrinsically nonlinear differential-integral equation that arises from the mathematical modelling of the evolution of an asexual population in a changing environment. The main objective is to pave the way for a rigorous analysis of the linear stability of travelling wave solutions of the corresponding problem.
Mathematics Subject Classification: 45G10, 45M99, 47H09We study the solvability of a perturbed quadratic integral equation of fractional order with linear modification of the argument. This equation is considered in the Banach space of real functions which are defined, bounded and continuous on an unbounded interval. Moreover, we will obtain some asymptotic characterization of solutions. Finally, we give an example to illustrate our abstract results.
The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.