The kinetic transport equation in the case of Compton scattering.
Let (Ω,,P) be a probability space and let τ: ℝ×Ω → ℝ be a function which is strictly increasing and continuous with respect to the first variable, measurable with respect to the second variable. Given the set of all continuous probability distribution solutions of the equation we determine the set of all its probability distribution solutions.
This paper provides sufficient conditions on a quasisymmetric automorphism γ of the unit circle which guarantee the existence of the smallest positive eigenvalue of γ. They are expressed by means of a regular quasiconformal Teichmüller self-mapping φ of the unit disc Δ. In particular, the norm of the generalized harmonic conjugation operator is determined by the maximal dilatation of φ. A characterization of all eigenvalues of a quasisymmetric automorphism γ in terms of the smallest positive eigenvalue...
In this paper we first study the stability of Ritz-Volterra projection (see below) and its maximum norm estimates, and then we use these results to derive some error estimates for finite element methods for parabolic integro-differential equations.