extensions of functions and stabilization of Glaeser refinements.
We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the -continuity property of these operators over Sobolev-type spaces of periodic functions.
Ad un'algebra di von Neumann separabile , in forma standard su di uno spazio di Hilbert , si associa la algebra definita come la algebra costituita dai punti fissi dell'algebra di Cuntz generalizzata mediante l'azione canonica del gruppo degli unitari di . Si dà una caratterizzazione di nel caso in cui è un fattore iniettivo. In seguito, come applicazione della teoria dei sistemi asintoticamente abeliani, si mostra che, se è uno stato vettoriale normale e fedele di , la restrizione...
We show several examples of n.av̇alued fields with involution. Then, by means of a field of this kind, we introduce “n.aḢilbert spaces” in which the norm comes from a certain hermitian sesquilinear form. We study these spaces and the algebra of bounded operators which are defined on them and have an adjoint. Essential differences with respect to the usual case are observed.
As usual will denote the ring of real-valued continuous functions on a Tychonoff space . It is well-known that if and are realcompact spaces such that and are isomorphic, then and are homeomorphic; that is determines. The restriction to realcompact spaces stems from the fact that and are isomorphic, where is the (Hewitt) realcompactification of . In this note, a class of locally compact spaces that includes properly the class of locally compact realcompact spaces is exhibited...
On montre que les fonctions qui opèrent, par composition a gauche, sur l’espace de Besov d’exposant , avec , dans l’espace euclidien de dimension , sont précisément les fonctions lipschitziennes.
Soient des éléments d’une -algèbre commutative unifère . On définit et étudie un “spectre” de qui dépend de la croissance des fonctions de l’égalité spectraleprès du spectre simultané. À partir des propriétés de ce spectre, on construit un calcul fonctionnel qui, réduit au cas banachique, s’étend à certaines fonctions supposées seulement holomorphes à l’intérieur du spectre simultané. Ce calcul fonctionnel permet aussi d’étudier la régularité des éléments et des fonctions .