A Lusin Type Approximation of Bessel Potentials and Besov Functions by Smooth Functions.
We prove unconditionality of general Franklin systems in , where X is a UMD space and where the general Franklin system corresponds to a quasi-dyadic, weakly regular sequence of knots.
We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin spaces with weights via a smooth kernel which satisfies “minimal” moment and Tauberian conditions. The results are stated in terms of the mixed norm of a certain maximal function of a distribution in these weighted spaces.
Consider, by way of example, the following F. and M. Riesz theorem for Rn: Let μ be a finite measure on Rn whose Fourier transform μ* is supported in a closed convex cone which is proper, that is, which contains no entire line. Then μ is absolutely continuous (cf. Stein and Weiss [SW]). Here, as in the sequel, absolutely continuous means with respect to Lebesque measure. In this theorem one can replace the condition on the support of μ* by a similar condition on the wave front set WF(μ) of μ, while...
Let G(X) denote the smallest (von Neumann) regular ring of real-valued functions with domain X that contains C(X), the ring of continuous real-valued functions on a Tikhonov topological space (X,τ). We investigate when G(X) coincides with the ring of continuous real-valued functions on the space , where is the smallest Tikhonov topology on X for which and is von Neumann regular. The compact and metric spaces for which are characterized. Necessary, and different sufficient, conditions...
A randomized q-central or q-commutative limit theorem on a family of bialgebras with one complex parameter is shown.
We present a change of variable method and use it to prove the equivalence to bundle shifts for certain analytic Toeplitz operators on the Banach spaces . In Section 2 we see this approach applied in the analysis of essential spectra. Some partial results were obtained in [9] in the Hilbert space case.
About twenty five years ago the first discrete mathematical model of the immune system was proposed. It was very simple and stylized. Later, many other computational models have been proposed each one adding a certain level of sophistication and detail to the description of the system. One of these, the Celada-Seiden model published back in 1992, was already mature at its birth, setting apart from the topic-specific nature of the other models. This...