A Leray--Schauder alternative for weakly-strongly sequentially continuous weakly compact maps.
It is shown that if F is a topological vector space containing a complete, locally pseudo-convex subspace E such that F/E = L₀ then E is complemented in F and so F = E⊕ L₀. This generalizes results by Kalton and Peck and Faber.
We prove that for every closed locally convex subspace E of and for any continuous linear operator T from to there is a continuous linear operator S from to such that T = QS where Q is the quotient map from to .
We point out the following fact: if Ω ⊂ is a bounded open set, δ>0, and p>1, then , where
We construct a Lipschitz function f on X = ℝ ² such that, for each 0 ≠ v ∈ X, the function f is smooth on a.e. line parallel to v and f is Gâteaux non-differentiable at all points of X except a first category set. Consequently, the same holds if X (with dimX > 1) is an arbitrary Banach space and “a.e.” has any usual “measure sense”. This example gives an answer to a natural question concerning the author’s recent study of linearly essentially smooth functions (which generalize essentially smooth...
Let , where the sum is taken over the lattice of all points k in having integer-valued components, j∈ℕ and . Let be either or (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on The aim of the paper is to clarify under what conditions is equivalent to .
We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.
Let F be a power series centered at the origin in a real Banach space with radius of uniform convergence ϱ. We show that F is analytic in the open ball B of radius ϱ/√e, and furthermore, the Taylor series of F about any point a ∈ B converges uniformly within every closed ball centered at a contained in B.