Page 1 Next

Displaying 1 – 20 of 52

Showing per page

Nearness relations in linear spaces

Martin Kalina (2004)

Kybernetika

In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms.

Nevanlinna algebras

A. Haldimann, H. Jarchow (2001)

Studia Mathematica

The Nevanlinna algebras, α p , of this paper are the L p variants of classical weighted area Nevanlinna classes of analytic functions on = z ∈ ℂ: |z| < 1. They are F-algebras, neither locally bounded nor locally convex, with a rich duality structure. For s = (α+2)/p, the algebra F s of analytic functions f: → ℂ such that ( 1 - | z | ) s | f ( z ) | 0 as |z| → 1 is the Fréchet envelope of α p . The corresponding algebra s of analytic f: → ℂ such that s u p z ( 1 - | z | ) s | f ( z ) | < is a complete metric space but fails to be a topological vector space. F s is also...

Nonlinear operators of integral type in some function spaces.

Carlo Bardaro, Gianluca Vinti, J. Musielak (1997)

Collectanea Mathematica

We give results about embeddings, approximation and convergence theorems for a class of general nonlinear operators of integral type in abstract modular function spaces. Thus we extend some previous result on the matter.

Non-natural topologies on spaces of holomorphic functions

Dietmar Vogt (2013)

Annales Polonici Mathematici

It is shown that every proper Fréchet space with weak*-separable dual admits uncountably many inequivalent Fréchet topologies. This applies, in particular, to spaces of holomorphic functions, solving in the negative a problem of Jarnicki and Pflug. For this case an example with a short self-contained proof is added.

Currently displaying 1 – 20 of 52

Page 1 Next