Page 1 Next

Displaying 1 – 20 of 80

Showing per page

Packing constant for Cesàro-Orlicz sequence spaces

Zhen-Hua Ma, Li-Ning Jiang, Qiao-Ling Xin (2016)

Czechoslovak Mathematical Journal

The packing constant is an important and interesting geometric parameter of Banach spaces. Inspired by the packing constant for Orlicz sequence spaces, the main purpose of this paper is calculating the Kottman constant and the packing constant of the Cesàro-Orlicz sequence spaces ( ces φ ) defined by an Orlicz function φ equipped with the Luxemburg norm. In order to compute the constants, the paper gives two formulas. On the base of these formulas one can easily obtain the packing constant for the Cesàro...

Packing in Orlicz sequence spaces

M. Rao, Z. Ren (1997)

Studia Mathematica

We show how one can, in a unified way, calculate the Kottman and the packing constants of the Orlicz sequence space defined by an N-function, equipped with either the gauge or Orlicz norms. The values of these constants for a class of reflexive Orlicz sequence spaces are found, using a quantitative index of N-functions and some interpolation theorems. The exposition is essentially selfcontained.

Paracompact Spaces and Radon Spaces

Rodriguez-Salinas, Baltasar (1999)

Serdica Mathematical Journal

We prove that if E is a subset of a Banach space whose density is of measure zero and such that (E, weak) is a paracompact space, then (E, weak) is a Radon space of type (F ) under very general conditions.

PCA sets and convexity

R. Kaufman (2000)

Fundamenta Mathematicae

Three sets occurring in functional analysis are shown to be of class PCA (also called Σ 2 1 ) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].

p-Envelopes of non-locally convex F-spaces

C. M. Eoff (1992)

Annales Polonici Mathematici

The p-envelope of an F-space is the p-convex analogue of the Fréchet envelope. We show that if an F-space is locally bounded (i.e., a quasi-Banach space) with separating dual, then the p-envelope coincides with the Banach envelope only if the space is already locally convex. By contrast, we give examples of F-spaces with are not locally bounded nor locally convex for which the p-envelope and the Fréchet envelope are the same.

Perturbations of bi-continuous semigroups

Bálint Farkas (2004)

Studia Mathematica

The notion of bi-continuous semigroups has recently been introduced to handle semigroups on Banach spaces that are only strongly continuous for a topology coarser than the norm-topology. In this paper, as a continuation of the systematic treatment of such semigroups started in [20-22], we provide a bounded perturbation theorem, which turns out to be quite general in view of various examples.

Currently displaying 1 – 20 of 80

Page 1 Next