Displaying 61 – 80 of 146

Showing per page

Linearization of isometric embedding on Banach spaces

Yu Zhou, Zihou Zhang, Chunyan Liu (2015)

Studia Mathematica

Let X,Y be Banach spaces, f: X → Y be an isometry with f(0) = 0, and T : s p a n ¯ ( f ( X ) ) X be the Figiel operator with T f = I d X and ||T|| = 1. We present a sufficient and necessary condition for the Figiel operator T to admit a linear isometric right inverse. We also prove that such a right inverse exists when s p a n ¯ ( f ( X ) ) is weakly nearly strictly convex.

Linearly rigid metric spaces and the embedding problem

J. Melleray, F. V. Petrov, A. M. Vershik (2008)

Fundamenta Mathematicae

We consider the problem of isometric embedding of metric spaces into Banach spaces, and introduce and study the remarkable class of so-called linearly rigid metric spaces: these are the spaces that admit a unique, up to isometry, linearly dense isometric embedding into a Banach space. The first nontrivial example of such a space was given by R. Holmes; he proved that the universal Urysohn space has this property. We give a criterion of linear rigidity of a metric space, which allows us to give a...

Local dual spaces of a Banach space

Manuel González, Antonio Martínez-Abejón (2001)

Studia Mathematica

We study the local dual spaces of a Banach space X, which can be described as the subspaces of X* that have the properties that the principle of local reflexivity attributes to X as a subspace of X**. We give several characterizations of local dual spaces, which allow us to show many examples. Moreover, every separable space X has a separable local dual Z, and we can choose Z with the metric approximation property if X has it. We also show that a separable space containing no...

M -ideals of compact operators into p

Kamil John, Dirk Werner (2000)

Czechoslovak Mathematical Journal

We show for 2 p < and subspaces X of quotients of L p with a 1 -unconditional finite-dimensional Schauder decomposition that K ( X , p ) is an M -ideal in L ( X , p ) .

M ( r , s ) -ideals of compact operators

Rainis Haller, Marje Johanson, Eve Oja (2012)

Czechoslovak Mathematical Journal

We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces X and Y the subspace of all compact operators 𝒦 ( X , Y ) is an M ( r 1 r 2 , s 1 s 2 ) -ideal in the space of all continuous linear operators ( X , Y ) whenever 𝒦 ( X , X ) and 𝒦 ( Y , Y ) are M ( r 1 , s 1 ) - and M ( r 2 , s 2 ) -ideals in ( X , X ) and ( Y , Y ) , respectively, with r 1 + s 1 / 2 > 1 and r 2 + s 2 / 2 > 1 . We also prove that the M ( r , s ) -ideal 𝒦 ( X , Y ) in ( X , Y ) is separably determined. Among others, our results complete and improve some well-known results...

Mazur-Ulam Theorem

Artur Korniłowicz (2011)

Formalized Mathematics

The Mazur-Ulam theorem [15] has been formulated as two registrations: cluster bijective isometric -> midpoints-preserving Function of E, F; and cluster isometric midpoints-preserving -> Affine Function of E, F; A proof given by Jussi Väisälä [23] has been formalized.

Metric unconditionality and Fourier analysis

Stefan Neuwirth (1998)

Studia Mathematica

We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces L E p ( ) and C E ( ) of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces p E ( ) , p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between L E p ( ) and L E p + 2 ( ) . These...

M-ideals of homogeneous polynomials

Verónica Dimant (2011)

Studia Mathematica

We study the problem of whether w ( E ) , the space of n-homogeneous polynomials which are weakly continuous on bounded sets, is an M-ideal in the space (ⁿE) of continuous n-homogeneous polynomials. We obtain conditions that ensure this fact and present some examples. We prove that if w ( E ) is an M-ideal in (ⁿE), then w ( E ) coincides with w 0 ( E ) (n-homogeneous polynomials that are weakly continuous on bounded sets at 0). We introduce a polynomial version of property (M) and derive that if w ( E ) = w 0 ( E ) and (E) is an M-ideal in...

Multiplicative isometries on the Smirnov class

Osamu Hatori, Yasuo Iida (2011)

Open Mathematics

We show that T is a surjective multiplicative (but not necessarily linear) isometry from the Smirnov class on the open unit disk, the ball, or the polydisk onto itself, if and only if there exists a holomorphic automorphism Φ such that T(f)=f ○ Φ for every class element f or T(f) = f ϕ ¯ ¯ for every class element f, where the automorphism Φ is a unitary transformation in the case of the ball and Φ(z 1, ..., z n) = ( λ 1 z i 1 , . . . , λ n z i n ) for |λ j| = 1, 1 ≤ j ≤ n, and (i 1; ..., i n)is some permutation of the integers from...

Narrow operators (a survey)

Mikhail Popov (2011)

Banach Center Publications

Narrow operators are those operators defined on function spaces which are "small" at signs, i.e., at {-1,0,1}-valued functions. We summarize here some results and problems on them. One of the most interesting things is that if E has an unconditional basis then each operator on E is a sum of two narrow operators, while the sum of two narrow operators on L₁ is narrow. Recently this notion was generalized to vector lattices. This generalization explained the phenomena of sums: the set of all regular...

Narrow operators and rich subspaces of Banach spaces with the Daugavet property

Vladimir M. Kadets, Roman V. Shvidkoy, Dirk Werner (2001)

Studia Mathematica

Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).

Non-universal families of separable Banach spaces

Ondřej Kurka (2016)

Studia Mathematica

We prove that if 𝓒 is a family of separable Banach spaces which is analytic with respect to the Effros Borel structure and no X ∈ 𝓒 is isometrically universal for all separable Banach spaces, then there exists a separable Banach space with a monotone Schauder basis which is isometrically universal for 𝓒 but not for all separable Banach spaces. We also establish an analogous result for the class of strictly convex spaces.

On a decomposition of Banach spaces

Jakub Duda (2007)

Colloquium Mathematicae

By using D. Preiss' approach to a construction from a paper by J. Matoušek and E. Matoušková, and some results of E. Matoušková, we prove that we can decompose a separable Banach space with modulus of convexity of power type p as a union of a ball small set (in a rather strong symmetric sense) and a set which is Aronszajn null. This improves an earlier unpublished result of E. Matoušková. As a corollary, in each separable Banach space with modulus of convexity of power type p, there exists a closed...

Currently displaying 61 – 80 of 146