Embeding weakly compact sets
Reif, J. (1976)
Abstracta. 4th Winter School on Abstract Analysis
Matthew Daws, Volker Runde (2009)
Studia Mathematica
Daniel J. Fresen (2015)
Studia Mathematica
We study the way in which the Euclidean subspaces of a Banach space fit together, somewhat in the spirit of the Kashin decomposition. The main tool that we introduce is an estimate regarding the convex hull of a convex body in John's position with a Euclidean ball of a given radius, which leads to a new and simplified proof of the randomized isomorphic Dvoretzky theorem. Our results also include a characterization of spaces with nontrivial cotype in terms of arrangements of Euclidean subspaces.
Alexander Koldobsky, Marisa Zymonopoulou (2003)
Studia Mathematica
We study the extremal volume of central hyperplane sections of complex n-dimensional -balls with 0 < p ≤ 2. We show that the minimum corresponds to hyperplanes orthogonal to vectors ξ = (ξ¹,...,ξⁿ) ∈ ℂⁿ with |ξ¹| = ... = |ξⁿ|, and the maximum corresponds to hyperplanes orthogonal to vectors with only one non-zero coordinate.
Gryegorz Mielczarek (1999)
Acta Universitatis Carolinae. Mathematica et Physica
Piotr Mankiewicz (1989)
Studia Mathematica
Martínez-Abejón, Antonio, Pello, Javier (2003)
Annales Academiae Scientiarum Fennicae. Mathematica
Tomczak-Jaegermann, Nicole (1998)
Documenta Mathematica
Béla Bollobás (1972)
Elemente der Mathematik
J. Bastero, J. Bernués (2007)
Extracta Mathematicae
M. I. Ostrovskii (1996)
Extracta Mathematicae
Alon Dmitriyuk, Yehoram Gordon (2009)
Studia Mathematica
Let ε > 0 and 1 ≤ k ≤ n and let be affine subspaces of ℝⁿ, each of dimension at most k. Let if ε < 1, and m = O(k + log p/log(1 + ε)) if ε ≥ 1. We prove that there is a linear map such that for all 1 ≤ l ≤ p and we have ||x-y||₂ ≤ ||H(x)-H(y)||₂ ≤ (1+ε)||x-y||₂, i.e. the distance distortion is at most 1 + ε. The estimate on m is tight in terms of k and p whenever ε < 1, and is tight on ε,k,p whenever ε ≥ 1. We extend these results to embeddings into general normed spaces Y.
Jörg Wenzel (1994)
Studia Mathematica
We characterize the UMD-property of a Banach space X by sequences of ideal norms associated with trigonometric orthonormal systems. The asymptotic behavior of those numerical parameters can be used to decide whether X is a UMD-space. Moreover, if this is not the case, we obtain a measure that shows how far X is from being a UMD-space. The main result is that all described sequences are not only simultaneously bounded but are also asymptotically equivalent.
Bernard Maurey (2003/2004)
Séminaire Bourbaki
La théorie des corps convexes a commencé à la fin du xixe siècle avec l’inégalité de Brunn, généralisée ensuite sous la forme de l’inégalité de Brunn-Minkowski-Lusternik, qui s’applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d’Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure,...
A. Koldobsky, A. Pajor, V. Yaskin (2008)
Studia Mathematica
We extend Kahane-Khinchin type inequalities to the case p > -2. As an application we verify the slicing problem for the unit balls of finite-dimensional spaces that embed in , p > -2.
Effros, Edward G., Junge, Marius, Ruan, Zhong-Jin (2000)
Annals of Mathematics. Second Series
Hermann König (1995)
Banach Center Publications
It is shown that imbeds isometrically into provided that n is a prime power plus one, in the complex case. This and similar imbeddings are constructed using elementary techniques from number theory, combinatorics and coding theory. The imbeddings are related to existence of certain cubature formulas in numerical analysis.
José L. Marcolino Nhani (2001)
O. Guédon, S. Mendelson, A. Pajor, N. Tomczak-Jaegermann (2008)
Revista Matemática Iberoamericana
Manor Mendel, Assaf Naor (2013)
Journal of the European Mathematical Society
It is shown that a Banach space admits an equivalent norm whose modulus of uniform convexity has power-type if and only if it is Markov -convex. Counterexamples are constructed to natural questions related to isomorphic uniform convexity of metric spaces, showing in particular that tree metrics fail to have the dichotomy property.