Bases communes dans certains espaces de fonctions harmoniques et fonctions séparément harmoniques sur certains ensembles de
We provide a partial answer to the question of Vladimir Kadets whether given an ℱ-basis of a Banach space X, with respect to some filter ℱ ⊂ 𝒫(ℕ), the coordinate functionals are continuous. The answer is positive if the character of ℱ is less than 𝔭. In this case every ℱ-basis is an M-basis with brackets which are determined by an element of ℱ.
We give biorthogonal system characterizations of Banach spaces that fail the Dunford-Pettis property, contain an isomorphic copy of c₀, or fail the hereditary Dunford-Pettis property. We combine this with previous results to show that each infinite-dimensional Banach space has one of three types of biorthogonal systems.
We study sufficient conditions on the weight w, in terms of membership in the classes, for the spline wavelet systems to be unconditional bases of the weighted space . The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
For two Banach spaces X and Y, we write if X embeds into Y and vice versa; then we say that X and Y have the same linear dimension. In this paper, we consider classes of Banach spaces with symmetric bases. We say that such a class ℱ has the Cantor-Bernstein property if for every X,Y ∈ ℱ the condition implies the respective bases (of X and Y) are equivalent, and hence the spaces X and Y are isomorphic. We prove (Theorems 3.1, 3.3, 3.5) that the class of Orlicz sequence spaces generated by regularly...