About the class of ordered limited operators
We give a brief survey of recent results of order limited operators related to some properties on Banach lattices.
We give a brief survey of recent results of order limited operators related to some properties on Banach lattices.
An abstract characterization of Orlicz-Kantorovich lattices constructed by a measure with values in the ring of measurable functions is presented.
In previous papers, it is proved, among other things, that every infinite dimensional sigma-Dedekind complete Banach lattice has a separable quotient. It has come to my attention that L. Weis proved this result without assuming sigma-Dedekind completeness; the proof is based, however, on the deep theorem of J. Hagler and W.B. Johnson concerning the structure of dual balls of Banach spaces and therefore cannot be applied simply to the case of locally convex solid topologically complete Riesz spaces....
We introduce new concept of almost demi Dunford–Pettis operators. Let be a Banach lattice. An operator from into is said to be almost demi Dunford–Pettis if, for every sequence in such that in and as , we have as . In addition, we study some properties of this class of operators and its relationships with others known operators.
We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.
We present a simple proof of a Banach-Stone type Theorem. The method used in the proof also provides an answer to a conjecture of Cao, Reilly and Xiong.
The paper contains some applications of the notion of sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an sets. As a sequence characterization of such operators, we see that an operator from a Banach space into a Banach lattice is order -Dunford-Pettis, if and only if for for every weakly null...