Internal exact controllability of the linear population dynamics with diffusion.
Let , and be such that , and let be some admissible functions such that and are equivalent. We first prove that, via the interpolation method, the interpolation of two generalized grand Morrey spaces on a quasi-metric measure space is the generalized grand Morrey space . Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
Banach operator ideal properties of the inclusion maps between Banach sequence spaces are used to study interpolation of orbit spaces. Relationships between those spaces and the method-of-means spaces generated by couples of weighted Banach sequence spaces with the weights determined by concave functions and their Janson sequences are shown. As an application we obtain the description of interpolation orbits in couples of weighted -spaces when they are not described by the K-method. We also develop...
The interpolation properties of Cesàro sequence and function spaces are investigated. It is shown that is an interpolation space between and for 1 < p₀ < p₁ ≤ ∞ and 1/p = (1 - θ)/p₀ + θ/p₁ with 0 < θ < 1, where I = [0,∞) or [0,1]. The same result is true for Cesàro sequence spaces. On the other hand, is not an interpolation space between Ces₁[0,1] and .
Under some assumptions on the pair , we study equivalence between interpolation properties of linear operators and monotonicity conditions for a pair (Y,Z) of rearrangement invariant quasi-Banach spaces when the extreme spaces of the interpolation are . Weak and restricted weak intermediate spaces fall within our context. Applications to classical Lorentz and Lorentz-Orlicz spaces are given.
If C is a capacity on a measurable space, we prove that the restriction of the K-functional to quasicontinuous functions f ∈ QC is equivalent to . We apply this result to identify the interpolation space .
The behavior of the essential spectrum and the essential norm under (complex/real) interpolation is investigated. We extend an example of Albrecht and Müller for the spectrum by showing that in complex interpolation the essential spectrum of an interpolated operator is also in general a discontinuous map of the parameter θ. We discuss the logarithmic convexity (up to a multiplicative constant) of the essential norm under real interpolation, and show that this holds provided certain compact approximation...
We study the behavior of the ball measure of non-compactness under several interpolation methods. First we deal with methods that interpolate couples of spaces, and then we proceed to extend the results to methods that interpolate finite families of spaces. We will need an approximation hypothesis on the target family of spaces.
We investigate the behaviour of the measure of non-compactness of an operator under real interpolation. Our results refer to general Banach couples. An application to the essential spectral radius of interpolated operators is also given.
We study a problem of interpolating a linear operator which is bounded on some family of characteristic functions. A new example is given of a Banach couple of function spaces for which such interpolation is possible. This couple is of the form where B is an arbitrary Banach lattice of measurable functions on a σ-finite nonatomic measure space (Ω,Σ,μ). We also give an equivalent expression for the norm of a function ⨍ in the real interpolation space in terms of the characteristic functions of...
A scale of function spaces is considered which proved to be of considerable importance in analysis. Interpolation properties of these spaces are studied by means of the real interpolation method. The main result consists in demonstrating that this scale is interpolated in a way different from that for Lp spaces, namely, the interpolation space is not from this scale.
The paper is devoted to some aspects of the real interpolation method in the case of triples (X₀,X₁,Q) where X̅: = (X₀,X₁) is a Banach couple and Q is a convex cone. The first fundamental result of the theory, the interpolation theorem, holds in this situation (for linear operators preserving the cone structure). The second one, the reiteration theorem, holds only under some conditions on the triple. One of these conditions, the so-called intersection property, is studied for cones with respect...