Sobre los teoremas de Lyapunov y de Radon-Nikodym.
2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.Schauder's fixed point theorem is used to establish an existence result for an infinite system of singular integral equations in the form: (1) xi(t) = ai(t)+ ∫t0 (t − s)− α (s, x1(s), x2(s), …) ds, where i = 1,2,…, α ∈ (0,1) and t ∈ I = [0,T]. The result obtained is applied to show the solvability of an infinite system of differential equation of fractional orders.
We survey several applications of Simons’ inequality and state related open problems. We show that if a Banach space X has a strongly sub-differentiable norm, then every bounded weakly closed subset of X is an intersection of finite union of balls.
We prove the continuity in norm of the translation operator in the Musielak-Orlicz spaces. An application to the convergence in norm of approximate identities is given, whereby we prove density results of the smooth functions in , in both the modular and norm topologies. These density results are then applied to obtain basic topological properties.
This note contains a short proof of the equivalence of the Schur and Dunford-Pettis properties in the class of discrete KB-spaces. We also present an operator characterization of the Schur property (Theorem 2) and we notice that Banach lattices which band hereditary l1 coincide with Banach lattices having the Schur property. (This characterization is due to Popa (1977)). Moreover, the paper offers examples of Banach lattices with the positive Schur property and without the Schur property and which...
We introduce the notion of order weakly sequentially continuous lattice operations of a Banach lattice, use it to generalize a result regarding the characterization of order weakly compact operators, and establish its converse. Also, we derive some interesting consequences.
We establish necessary and sufficient conditions under which each operator between Banach lattices is weakly compact and we give some consequences.
We obtain a classification of projective tensor products of C(K) spaces according to whether none, exactly one or more than one factor contains copies of ℓ₁, in terms of the behaviour of certain classes of multilinear operators on the product of the spaces or the verification of certain Banach space properties of the corresponding tensor product. The main tool is an improvement of some results of Emmanuele and Hensgen on the reciprocal Dunford-Pettis and Pełczyński's (V) properties of the projective...