The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 221 – 240 of 316

Showing per page

Stability of Supporting and Exposing Elements of Convex Sets in Banach Spaces

Azé, D., Lucchetti, R. (1996)

Serdica Mathematical Journal

* This work was supported by the CNR while the author was visiting the University of Milan.To a convex set in a Banach space we associate a convex function (the separating function), whose subdifferential provides useful information on the nature of the supporting and exposed points of the convex set. These points are shown to be also connected to the solutions of a minimization problem involving the separating function. We investigate some relevant properties of this function and of its conjugate...

Stable points of unit ball in Orlicz spaces

Marek Wisła (1991)

Commentationes Mathematicae Universitatis Carolinae

The aim of this paper is to investigate stability of unit ball in Orlicz spaces, endowed with the Luxemburg norm, from the “local” point of view. Firstly, those points of the unit ball are characterized which are stable, i.e., at which the map z { ( x , y ) : 1 2 ( x + y ) = z } is lower-semicontinuous. Then the main theorem is established: An Orlicz space L ϕ ( μ ) has stable unit ball if and only if either L ϕ ( μ ) is finite dimensional or it is isometric to L ( μ ) or ϕ satisfies the condition Δ r or Δ r 0 (appropriate to the measure μ and the function...

Stochastic approximation properties in Banach spaces

V. P. Fonf, W. B. Johnson, G. Pisier, D. Preiss (2003)

Studia Mathematica

We show that a Banach space X has the stochastic approximation property iff it has the stochasic basis property, and these properties are equivalent to the approximation property if X has nontrivial type. If for every Radon probability on X, there is an operator from an L p space into X whose range has probability one, then X is a quotient of an L p space. This extends a theorem of Sato’s which dealt with the case p = 2. In any infinite-dimensional Banach space X there is a compact set K so that for...

Strict u-ideals in Banach spaces

Vegard Lima, Åsvald Lima (2009)

Studia Mathematica

We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition X * * * = X * X is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c₀. We also show that is not a u-ideal.

Strong proximinality and polyhedral spaces.

Gilles Godefroy, V. Indumathi (2001)

Revista Matemática Complutense

In any dual space X*, the set QP of quasi-polyhedral points is contained in the set SSD of points of strong subdifferentiability of the norm which is itself contained in the set NA of norm attaining functionals. We show that NA and SSD coincide if and only if every proximinal hyperplane of X is strongly proximinal, and that if QP and NA coincide then every finite codimensional proximinal subspace of X is strongly proximinal. Natural examples and applications are provided.

Currently displaying 221 – 240 of 316