Displaying 201 – 220 of 316

Showing per page

Spaces of Lipschitz and Hölder functions and their applications.

Nigel J. Kalton (2004)

Collectanea Mathematica

We study the structure of Lipschitz and Hölder-type spaces and their preduals on general metric spaces, and give applications to the uniform structure of Banach spaces. In particular we resolve a problem of Weaver who asks wether if M is a compact metric space and 0 < α < 1, it is always true the space of Hölder continuous functions of class α is isomorphic to l∞. We show that, on the contrary, if M is a compact convex subset of a Hilbert space this isomorphism holds if and only if...

Spaces of operators and c₀

P. Lewis (2001)

Studia Mathematica

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in X γ Y * . Applications to embeddings of c₀ in various spaces of operators are given.

Spaces of type H + C

Walter Rudin (1975)

Annales de l'institut Fourier

A simple theorem is proved which states a sufficient condition for the sum ot two closed subspaces of a Banach space to be closed. This leads to several analogues of Sarason’s theorem which states that H + C is a closed subalgebra of L . In these analogues, the unit circle is replaces by other groups, and the unit disc is replaced by polydiscs or by balls in spaces of several complex variables. Sums of closed ideals in Banach algebras are also studied.

Spaces with maximal projection constants

Hermann König, Nicole Tomczak-Jaegermann (2003)

Studia Mathematica

We show that n-dimensional spaces with maximal projection constants exist not only as subspaces of l but also as subspaces of l₁. They are characterized by a rigid set of vector conditions. Nevertheless, we show that, in general, there are many non-isometric spaces with maximal projection constants. Several examples are discussed in detail.

Sparse recovery with pre-Gaussian random matrices

Simon Foucart, Ming-Jun Lai (2010)

Studia Mathematica

For an m × N underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the s-sparse solutions of the system can be found by ℓ₁-minimization under the optimal condition m ≥ csln(eN/s). The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the ℓ₁-norm and the outer norm depends on probability distributions.

Special symmetries of Banach spaces isomorphic to Hilbert spaces

Jarno Talponen (2010)

Studia Mathematica

We characterize Hilbert spaces among Banach spaces in terms of transitivity with respect to nicely behaved subgroups of the isometry group. For example, the following result is typical: If X is a real Banach space isomorphic to a Hilbert space and convex-transitive with respect to the isometric finite-dimensional perturbations of the identity, then X is already isometric to a Hilbert space.

Spectral Calculus and Lipschitz Extension for Barycentric Metric Spaces

Manor Mendel, Assaf Naor (2013)

Analysis and Geometry in Metric Spaces

The metric Markov cotype of barycentric metric spaces is computed, yielding the first class of metric spaces that are not Banach spaces for which this bi-Lipschitz invariant is understood. It is shown that this leads to new nonlinear spectral calculus inequalities, as well as a unified framework for Lipschitz extension, including new Lipschitz extension results for CAT (0) targets. An example that elucidates the relation between metric Markov cotype and Rademacher cotype is analyzed, showing that...

Spectral theory and operator ergodic theory on super-reflexive Banach spaces

Earl Berkson (2010)

Studia Mathematica

On reflexive spaces trigonometrically well-bounded operators have an operator-ergodic-theory characterization as the invertible operators U such that s u p n , z | | 0 < | k | n ( 1 - | k | / ( n + 1 ) ) k - 1 z k U k | | < . (*) Trigonometrically well-bounded operators permeate many settings of modern analysis, and this note highlights the advances in both their spectral theory and operator ergodic theory made possible by a recent rekindling of interest in the R. C. James inequalities for super-reflexive spaces. When the James inequalities are combined with Young-Stieltjes...

Sphere equivalence, Property H, and Banach expanders

Qingjin Cheng (2016)

Studia Mathematica

We study the uniform classification of the unit spheres of general Banach sequence spaces. In particular, we obtain some interesting applications involving Property H introduced by Kasparov and Yu, and Banach expanders.

Spreading sequences in JT

Helga Fetter, B. Gamboa de Buen (1997)

Studia Mathematica

We prove that a normalized non-weakly null basic sequence in the James tree space JT admits a subsequence which is equivalent to the summing basis for the James space J. Consequently, every normalized basic sequence admits a spreading subsequence which is either equivalent to the unit vector basis of l 2 or to the summing basis for J.

Square functions associated to Schrödinger operators

I. Abu-Falahah, P. R. Stinga, J. L. Torrea (2011)

Studia Mathematica

We characterize geometric properties of Banach spaces in terms of boundedness of square functions associated to general Schrödinger operators of the form ℒ = -Δ + V, where the nonnegative potential V satisfies a reverse Hölder inequality. The main idea is to sharpen the well known localization method introduced by Z. Shen. Our results can be regarded as alternative proofs of the boundedness in H¹, L p and BMO of classical ℒ-square functions.

Currently displaying 201 – 220 of 316