Displaying 2481 – 2500 of 3166

Showing per page

Special symmetries of Banach spaces isomorphic to Hilbert spaces

Jarno Talponen (2010)

Studia Mathematica

We characterize Hilbert spaces among Banach spaces in terms of transitivity with respect to nicely behaved subgroups of the isometry group. For example, the following result is typical: If X is a real Banach space isomorphic to a Hilbert space and convex-transitive with respect to the isometric finite-dimensional perturbations of the identity, then X is already isometric to a Hilbert space.

Spectral Calculus and Lipschitz Extension for Barycentric Metric Spaces

Manor Mendel, Assaf Naor (2013)

Analysis and Geometry in Metric Spaces

The metric Markov cotype of barycentric metric spaces is computed, yielding the first class of metric spaces that are not Banach spaces for which this bi-Lipschitz invariant is understood. It is shown that this leads to new nonlinear spectral calculus inequalities, as well as a unified framework for Lipschitz extension, including new Lipschitz extension results for CAT (0) targets. An example that elucidates the relation between metric Markov cotype and Rademacher cotype is analyzed, showing that...

Spectral theory and operator ergodic theory on super-reflexive Banach spaces

Earl Berkson (2010)

Studia Mathematica

On reflexive spaces trigonometrically well-bounded operators have an operator-ergodic-theory characterization as the invertible operators U such that s u p n , z | | 0 < | k | n ( 1 - | k | / ( n + 1 ) ) k - 1 z k U k | | < . (*) Trigonometrically well-bounded operators permeate many settings of modern analysis, and this note highlights the advances in both their spectral theory and operator ergodic theory made possible by a recent rekindling of interest in the R. C. James inequalities for super-reflexive spaces. When the James inequalities are combined with Young-Stieltjes...

Sphere equivalence, Property H, and Banach expanders

Qingjin Cheng (2016)

Studia Mathematica

We study the uniform classification of the unit spheres of general Banach sequence spaces. In particular, we obtain some interesting applications involving Property H introduced by Kasparov and Yu, and Banach expanders.

Spreading sequences in JT

Helga Fetter, B. Gamboa de Buen (1997)

Studia Mathematica

We prove that a normalized non-weakly null basic sequence in the James tree space JT admits a subsequence which is equivalent to the summing basis for the James space J. Consequently, every normalized basic sequence admits a spreading subsequence which is either equivalent to the unit vector basis of l 2 or to the summing basis for J.

Square functions associated to Schrödinger operators

I. Abu-Falahah, P. R. Stinga, J. L. Torrea (2011)

Studia Mathematica

We characterize geometric properties of Banach spaces in terms of boundedness of square functions associated to general Schrödinger operators of the form ℒ = -Δ + V, where the nonnegative potential V satisfies a reverse Hölder inequality. The main idea is to sharpen the well known localization method introduced by Z. Shen. Our results can be regarded as alternative proofs of the boundedness in H¹, L p and BMO of classical ℒ-square functions.

Stability of Supporting and Exposing Elements of Convex Sets in Banach Spaces

Azé, D., Lucchetti, R. (1996)

Serdica Mathematical Journal

* This work was supported by the CNR while the author was visiting the University of Milan.To a convex set in a Banach space we associate a convex function (the separating function), whose subdifferential provides useful information on the nature of the supporting and exposed points of the convex set. These points are shown to be also connected to the solutions of a minimization problem involving the separating function. We investigate some relevant properties of this function and of its conjugate...

Stable points of unit ball in Orlicz spaces

Marek Wisła (1991)

Commentationes Mathematicae Universitatis Carolinae

The aim of this paper is to investigate stability of unit ball in Orlicz spaces, endowed with the Luxemburg norm, from the “local” point of view. Firstly, those points of the unit ball are characterized which are stable, i.e., at which the map z { ( x , y ) : 1 2 ( x + y ) = z } is lower-semicontinuous. Then the main theorem is established: An Orlicz space L ϕ ( μ ) has stable unit ball if and only if either L ϕ ( μ ) is finite dimensional or it is isometric to L ( μ ) or ϕ satisfies the condition Δ r or Δ r 0 (appropriate to the measure μ and the function...

Currently displaying 2481 – 2500 of 3166