Displaying 61 – 80 of 91

Showing per page

Distortion and spreading models in modified mixed Tsirelson spaces

S. A. Argyros, I. Deliyanni, A. Manoussakis (2003)

Studia Mathematica

The results of the first part concern the existence of higher order ℓ₁ spreading models in asymptotic ℓ₁ Banach spaces. We sketch the proof of the fact that the mixed Tsirelson space T[(ₙ,θₙ)ₙ], θ n + m θ θ and l i m n θ 1 / n = 1 , admits an ω spreading model in every block subspace. We also prove that if X is a Banach space with a basis, with the property that there exists a sequence (θₙ)ₙ ⊂ (0,1) with l i m n θ 1 / n = 1 , such that, for every n ∈ ℕ, | | k = 1 m x k | | θ k = 1 m | | x k | | for every ₙ-admissible block sequence ( x k ) k = 1 m of vectors in X, then there exists c > 0 such...

Does C* -embedding imply C*-embedding in the realm of products with a non-discrete metric factor?

Valentin Gutev, Haruto Ohta (2000)

Fundamenta Mathematicae

The above question was raised by Teodor Przymusiński in May, 1983, in an unpublished manuscript of his. Later on, it was recognized by Takao Hoshina as a question that is of fundamental importance in the theory of rectangular normality. The present paper provides a complete affirmative solution. The technique developed for the purpose allows one to answer also another question of Przymusiński's.

Domination by positive Banach-Saks operators

Julio Flores, César Ruiz (2006)

Studia Mathematica

Given a positive Banach-Saks operator T between two Banach lattices E and F, we give sufficient conditions on E and F in order to ensure that every positive operator dominated by T is Banach-Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach-Saks property in Banach lattices in terms of disjointness.

Domination of operators in the non-commutative setting

Timur Oikhberg, Eugeniu Spinu (2013)

Studia Mathematica

We consider majorization problems in the non-commutative setting. More specifically, suppose E and F are ordered normed spaces (not necessarily lattices), and 0 ≤ T ≤ S in B(E,F). If S belongs to a certain ideal (for instance, the ideal of compact or Dunford-Pettis operators), does it follow that T belongs to that ideal as well? We concentrate on the case when E and F are C*-algebras, preduals of von Neumann algebras, or non-commutative function spaces. In particular, we show that, for C*-algebras...

Dual Banach algebras: representations and injectivity

Matthew Daws (2007)

Studia Mathematica

We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way to C*- and W*-algebras; we show that interpolation space techniques can be used in place of GNS type arguments....

Dual renormings of Banach spaces

Petr Hájek (1996)

Commentationes Mathematicae Universitatis Carolinae

We prove that a Banach space admitting an equivalent WUR norm is an Asplund space. Some related dual renormings are also presented.

Dual spaces generated by the interior of the set of norm attaining functionals

Maria D. Acosta, Julio Becerra Guerrero, Manuel Ruiz Galán (2002)

Studia Mathematica

We characterize some isomorphic properties of Banach spaces in terms of the set of norm attaining functionals. The main result states that a Banach space is reflexive as soon as it does not contain ℓ₁ and the dual unit ball is the w*-closure of the convex hull of elements contained in the "uniform" interior of the set of norm attaining functionals. By assuming a very weak isometric condition (lack of roughness) instead of not containing ℓ₁, we also obtain a similar result. As a consequence of the...

Dual spaces of compact operator spaces and the weak Radon-Nikodým property

Keun Young Lee (2012)

Studia Mathematica

We deal with the weak Radon-Nikodým property in connection with the dual space of (X,Y), the space of compact operators from a Banach space X to a Banach space Y. First, under the weak Radon-Nikodým property, we give a representation of that dual. Next, using this representation, we provide some applications to the dual spaces of (X,Y) and w * w ( X * , Y ) , the space of weak*-weakly continuous operators.

Currently displaying 61 – 80 of 91