Displaying 921 – 940 of 3161

Showing per page

Factoring Rosenthal operators.

Teresa Alvarez (1988)

Publicacions Matemàtiques

In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of l1.

Factorization and domination of positive Banach-Saks operators

Julio Flores, Pedro Tradacete (2008)

Studia Mathematica

It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.

Factorization of vector measures and their integration operators

José Rodríguez (2016)

Colloquium Mathematicae

Let X be a Banach space and ν a countably additive X-valued measure defined on a σ-algebra. We discuss some generation properties of the Banach space L¹(ν) and its connection with uniform Eberlein compacta. In this way, we provide a new proof that L¹(ν) is weakly compactly generated and embeds isomorphically into a Hilbert generated Banach space. The Davis-Figiel-Johnson-Pełczyński factorization of the integration operator I ν : L ¹ ( ν ) X is also analyzed. As a result, we prove that if I ν is both completely continuous...

Factorization of weakly continuous holomorphic mappings

Manuel González, Joaqín Gutiérrez (1996)

Studia Mathematica

We prove a basic property of continuous multilinear mappings between topological vector spaces, from which we derive an easy proof of the fact that a multilinear mapping (and a polynomial) between topological vector spaces is weakly continuous on weakly bounded sets if and only if it is weakly uniformly} continuous on weakly bounded sets. This result was obtained in 1983 by Aron, Hervés and Valdivia for polynomials between Banach spaces, and it also holds if the weak topology is replaced by a coarser...

Families of almost disjoint Hamel bases.

Lorenz Halbeisen (2005)

Extracta Mathematicae

For infinite dimensional Banach spaces X we investigate the maximal size of a family of pairwise almost disjoint normalized Hamel bases of X, where two sets A and B are said to be almost disjoint if the cardinality of A ∩ B is smaller than the cardinality of either A or B.

Currently displaying 921 – 940 of 3161