On diffeomorphisms deleting weak compacta in Banach spaces
We prove that if X is an infinite-dimensional Banach space with smooth partitions of unity then X and X∖ K are diffeomorphic for every weakly compact set K ⊂ X.
We prove that if X is an infinite-dimensional Banach space with smooth partitions of unity then X and X∖ K are diffeomorphic for every weakly compact set K ⊂ X.
In Rolewicz (2002) it was proved that every strongly α(·)-paraconvex function defined on an open convex set in a separable Asplund space is Fréchet differentiable on a residual set. In this paper it is shown that the assumption of separability is not essential.
We give a description of the dual of a Calderón-Lozanovskiĭ intermediate space φ(X,Y) of a couple of Banach Köthe function spaces as an intermediate space ψ(X*,Y*) of the duals, associated with a "variable" function ψ.
Several conditions are given under which l1 embeds as a complemented subspace of a Banach space E if it embeds as a complemented subspace of an Orlicz space of E-valued functions. Previous results in Pisier (1978) and Bombal (1987) are extended in this way.
For a locally compact Hausdorff space K and a Banach space X let C₀(K, X) denote the space of all continuous functions f:K → X which vanish at infinity, equipped with the supremum norm. If X is the scalar field, we denote C₀(K, X) simply by C₀(K). We prove that for locally compact Hausdorff spaces K and L and for a Banach space X containing no copy of c₀, if there is an isomorphic embedding of C₀(K) into C₀(L,X), then either K is finite or |K| ≤ |L|. As a consequence, if there is an isomorphic embedding...
It is shown that the main results of the theory of real interpolation, i.e. the equivalence and reiteration theorems, can be extended from couples to a class of (n+1)-tuples of Banach spaces, which includes (n+1)-tuples of Banach function lattices, Sobolev and Besov spaces. As an application of our results, it is shown that Lions' problem on interpolation of subspaces and Semenov's problem on interpolation of subcouples have positive solutions when all spaces are Banach function lattices or their...
We study strictly G-convex renormings and extensions of strictly G-convex norms on Banach spaces. We prove that ℓω(Γ) space cannot be strictly G-convex renormed given Γ is uncountable and G is bounded and separable.
We prove results on ergodicity, i.e. on the property that the space is a direct sum of the kernel of an operator and the closure of its range, for closed linear operators A such that is uniformly bounded for all α > 0. We consider operators on Banach spaces which have the property that the space is complemented in its second dual space by a projection P. Results on ergodicity are obtained under a norm condition ||I - 2P|| ||I - Q|| < 2 where Q is a projection depending on the operator A....
In the paper we consider a class of Orlicz spaces equipped with the Orlicz norm over a non-negative, complete and sigma-finite measure space (T,Sigma,mu), which covers, among others, Orlicz spaces isomorphic to L-infinite and the interpolation space L1 + L-infinite. We give some necessary conditions for a point x from the unit sphere to be extreme. Applying this characterization, in the case of an atomless measure mu, we find a description of the set of extreme points of L1 + L-infinite which corresponds...